Files
mop3/kernel/amd64/mm.c
kamkow1 7915986902
All checks were successful
Build documentation / build-and-deploy (push) Successful in 28s
Remove Doxygen-style comments, change formatting to wrap comments
2026-01-06 02:04:32 +01:00

270 lines
7.3 KiB
C

#include <amd64/apic.h>
#include <amd64/intr_defs.h>
#include <aux/compiler.h>
#include <irq/irq.h>
#include <libk/std.h>
#include <libk/string.h>
#include <limine/requests.h>
#include <mm/pmm.h>
#include <sync/spin_lock.h>
#include <sys/debug.h>
#include <sys/mm.h>
#include <sys/smp.h>
/* Present flag */
#define AMD64_PG_PRESENT (1 << 0)
/* Writable flag */
#define AMD64_PG_RW (1 << 1)
/* User-accessible flag */
#define AMD64_PG_USER (1 << 2)
/* Auxilary struct for page directory walking */
struct pg_index {
uint16_t pml4, pml3, pml2, pml1;
} PACKED;
/* Kernel page directory */
static struct pd kernel_pd = {.lock = SPIN_LOCK_INIT};
/* Lock needed to sync between map/unmap operations and TLB shootdown */
static spin_lock_t mm_lock = SPIN_LOCK_INIT;
/* Get current value of CR3 register */
static uintptr_t amd64_current_cr3 (void) {
uintptr_t cr3;
__asm__ volatile ("movq %%cr3, %0" : "=r"(cr3)::"memory");
return cr3;
}
/* Load kernel CR3 as current CR3 */
void amd64_load_kernel_cr3 (void) {
__asm__ volatile ("movq %0, %%cr3" ::"r"(kernel_pd.cr3_paddr) : "memory");
}
/* Extract PML info from virtual address */
static struct pg_index amd64_mm_page_index (uint64_t vaddr) {
struct pg_index ret;
ret.pml4 = ((vaddr >> 39) & 0x1FF);
ret.pml3 = ((vaddr >> 30) & 0x1FF);
ret.pml2 = ((vaddr >> 21) & 0x1FF);
ret.pml1 = ((vaddr >> 12) & 0x1FF);
return ret;
}
/* Walk paging tables and allocate necessary structures along the way */
static uint64_t* amd64_mm_next_table (uint64_t* table, uint64_t entry_idx, bool alloc) {
uint64_t entry = table[entry_idx];
physaddr_t paddr;
struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
if (entry & AMD64_PG_PRESENT)
paddr = entry & ~0xFFFULL;
else {
if (!alloc)
return NULL;
paddr = pmm_alloc (1);
if (paddr == PMM_ALLOC_ERR)
return NULL;
memset ((void*)((uintptr_t)hhdm->offset + (uintptr_t)paddr), 0, PAGE_SIZE);
table[entry_idx] = paddr | AMD64_PG_PRESENT | AMD64_PG_RW | AMD64_PG_USER;
}
return (uint64_t*)((uintptr_t)hhdm->offset + (uintptr_t)paddr);
}
static bool amd64_mm_is_table_empty (uint64_t* table) {
for (size_t i = 0; i < 512; i++) {
if (table[i] & AMD64_PG_PRESENT)
return false;
}
return true;
}
/* Convert generic memory management subsystem flags into AMD64-specific flags */
static uint64_t amd64_mm_resolve_flags (uint32_t generic) {
uint64_t flags = 0;
flags |= ((generic & MM_PG_PRESENT) ? AMD64_PG_PRESENT : 0);
flags |= ((generic & MM_PG_RW) ? AMD64_PG_RW : 0);
flags |= ((generic & MM_PG_USER) ? AMD64_PG_USER : 0);
return flags;
}
/* Reload the current CR3 value ON A LOCAL CPU */
static void amd64_reload_cr3 (void) {
uint64_t cr3;
__asm__ volatile ("movq %%cr3, %0; movq %0, %%cr3" : "=r"(cr3)::"memory");
}
/* Map physical address to virtual address with flags. TLB needs to be flushed afterwards. */
void mm_map_page (struct pd* pd, uintptr_t paddr, uintptr_t vaddr, uint32_t flags) {
spin_lock (&mm_lock);
struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
bool do_reload = false;
if (flags & MM_PD_LOCK)
spin_lock (&pd->lock);
uint64_t amd64_flags = amd64_mm_resolve_flags (flags);
uint64_t* pml4 = (uint64_t*)(pd->cr3_paddr + (uintptr_t)hhdm->offset);
struct pg_index pg_index = amd64_mm_page_index (vaddr);
uint64_t* pml3 = amd64_mm_next_table (pml4, pg_index.pml4, true);
if (pml3 == NULL)
goto done;
uint64_t* pml2 = amd64_mm_next_table (pml3, pg_index.pml3, true);
if (pml2 == NULL)
goto done;
uint64_t* pml1 = amd64_mm_next_table (pml2, pg_index.pml2, true);
if (pml1 == NULL)
goto done;
uint64_t* pte = &pml1[pg_index.pml1];
*pte = ((paddr & ~0xFFFULL) | (amd64_flags & 0x7ULL));
do_reload = true;
done:
if (do_reload && (flags & MM_PD_RELOAD))
amd64_reload_cr3 ();
if (flags & MM_PD_LOCK)
spin_unlock (&pd->lock);
spin_unlock (&mm_lock);
}
/* Map a page into kernel page directory */
void mm_map_kernel_page (uintptr_t paddr, uintptr_t vaddr, uint32_t flags) {
mm_map_page (&kernel_pd, paddr, vaddr, flags);
}
/* Unmap a virtual address. TLB needs to be flushed afterwards */
void mm_unmap_page (struct pd* pd, uintptr_t vaddr, uint32_t flags) {
spin_lock (&mm_lock);
struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
bool do_reload = false;
if (flags & MM_PD_LOCK)
spin_lock (&pd->lock);
uint64_t* pml4 = (uint64_t*)(pd->cr3_paddr + (uintptr_t)hhdm->offset);
struct pg_index pg_index = amd64_mm_page_index (vaddr);
uint64_t* pml3 = amd64_mm_next_table (pml4, pg_index.pml4, false);
if (pml3 == NULL)
goto done;
uint64_t* pml2 = amd64_mm_next_table (pml3, pg_index.pml3, false);
if (pml2 == NULL)
goto done;
uint64_t* pml1 = amd64_mm_next_table (pml2, pg_index.pml2, false);
if (pml1 == NULL)
goto done;
uint64_t* pte = &pml1[pg_index.pml1];
if ((*pte) & AMD64_PG_PRESENT) {
*pte = 0;
do_reload = true;
}
if (amd64_mm_is_table_empty (pml1)) {
uintptr_t pml1_phys = pml2[pg_index.pml2] & ~0xFFFULL;
pmm_free (pml1_phys, 1);
pml2[pg_index.pml2] = 0;
if (amd64_mm_is_table_empty (pml2)) {
uintptr_t pml2_phys = pml3[pg_index.pml3] & ~0xFFFULL;
pmm_free (pml2_phys, 1);
pml3[pg_index.pml3] = 0;
if (amd64_mm_is_table_empty (pml3)) {
uintptr_t pml3_phys = pml4[pg_index.pml4] & ~0xFFFULL;
pmm_free (pml3_phys, 1);
pml4[pg_index.pml4] = 0;
}
}
}
done:
if (do_reload && (flags & MM_PD_RELOAD))
amd64_reload_cr3 ();
if (flags & MM_PD_LOCK)
spin_unlock (&pd->lock);
spin_unlock (&mm_lock);
}
/* Unmap a page from kernel page directory */
void mm_unmap_kernel_page (uintptr_t vaddr, uint32_t flags) {
mm_unmap_page (&kernel_pd, vaddr, flags);
}
/* Lock kernel page directory */
void mm_lock_kernel (void) { spin_lock (&kernel_pd.lock); }
/* Unlock kernel page directory */
void mm_unlock_kernel (void) { spin_unlock (&kernel_pd.lock); }
/* Allocate a userspace-ready page directory */
uintptr_t mm_alloc_user_pd_phys (void) {
struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
physaddr_t cr3 = pmm_alloc (1);
if (cr3 == PMM_ALLOC_ERR)
return 0;
uint8_t* vu_cr3 = (uint8_t*)((uintptr_t)hhdm->offset + cr3);
memset ((void*)vu_cr3, 0, PAGE_SIZE / 2);
uint8_t* vk_cr3 = (uint8_t*)((uintptr_t)hhdm->offset + (uintptr_t)kernel_pd.cr3_paddr);
memcpy (&vu_cr3[PAGE_SIZE / 2], &vk_cr3[PAGE_SIZE / 2], PAGE_SIZE / 2);
return cr3;
}
/* Reload after map/unmap operation was performed. This function does the TLB shootdown. */
void mm_reload (void) {
spin_lock (&mm_lock);
struct limine_mp_response* mp = limine_mp_request.response;
for (size_t i = 0; i < mp->cpu_count; i++) {
amd64_lapic_ipi (mp->cpus[i]->lapic_id, TLB_SHOOTDOWN);
}
spin_unlock (&mm_lock);
}
/* TLB shootdown IRQ handler */
static void amd64_tlb_shootdown_irq (void* arg, void* regs) {
(void)arg, (void)regs;
amd64_reload_cr3 ();
DEBUG ("cpu %u TLB shootdown\n", thiscpu->id);
}
/* Continue initializing memory management subsystem for AMD64 after the essential parts were
* initialized */
void mm_init2 (void) {
irq_attach (&amd64_tlb_shootdown_irq, NULL, TLB_SHOOTDOWN, IRQ_INTERRUPT_SAFE);
}
/* Initialize essentials for the AMD64 memory management subsystem */
void mm_init (void) { kernel_pd.cr3_paddr = amd64_current_cr3 (); }