Files
mop3/kernel/proc/proc.c
kamkow1 d7b734306f
All checks were successful
Build documentation / build-and-deploy (push) Successful in 42s
Introduce concept of Process Resources (PR_MEM), implement necessary syscalls
2026-01-07 22:47:30 +01:00

308 lines
7.9 KiB
C

#include <aux/compiler.h>
#include <aux/elf.h>
#include <irq/irq.h>
#include <libk/align.h>
#include <libk/list.h>
#include <libk/rbtree.h>
#include <libk/std.h>
#include <libk/string.h>
#include <limine/requests.h>
#include <mm/liballoc.h>
#include <mm/pmm.h>
#include <proc/proc.h>
#include <proc/resource.h>
#include <rd/rd.h>
#include <sync/spin_lock.h>
#include <sys/debug.h>
#include <sys/mm.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/spin.h>
#if defined(__x86_64__)
#include <amd64/intr_defs.h>
#endif
/*
* Lock ordering:
* 1. proc_tree_lock
* 2. [cpu]->lock
*/
static struct rb_node_link* proc_tree = NULL;
static spin_lock_t proc_tree_lock = SPIN_LOCK_INIT;
static bool proc_check_elf (uint8_t* elf) {
if (!((elf[0] == 0x7F) && (elf[1] == 'E') && (elf[2] == 'L') && (elf[3] == 'F')))
return false;
return true;
}
bool proc_map (struct proc* proc, uintptr_t start_paddr, uintptr_t start_vaddr, size_t pages,
uint32_t flags) {
struct proc_mapping* mapping = malloc (sizeof (*mapping));
if (mapping == NULL)
return false;
mapping->paddr = start_paddr;
mapping->vaddr = start_vaddr;
mapping->size = pages * PAGE_SIZE;
flags &= ~(MM_PD_LOCK | MM_PD_RELOAD); /* clear LOCK flag if present, because we lock manualy */
spin_lock (&proc->pd.lock);
list_append (proc->mappings, &mapping->proc_mappings_link);
for (uintptr_t vpage = start_vaddr, ppage = start_paddr; vpage < start_vaddr + pages * PAGE_SIZE;
vpage += PAGE_SIZE, ppage += PAGE_SIZE) {
mm_map_page (&proc->pd, ppage, vpage, flags);
}
spin_unlock (&proc->pd.lock);
return true;
}
bool proc_unmap (struct proc* proc, uintptr_t start_vaddr, size_t pages) {
size_t unmap_size = pages * PAGE_SIZE;
uintptr_t end_vaddr = start_vaddr + unmap_size;
struct list_node_link *mapping_link, *mapping_link_tmp;
bool used_tail_mapping = false;
struct proc_mapping* tail_mapping = malloc (sizeof (*tail_mapping));
if (tail_mapping == NULL)
return false;
spin_lock (&proc->pd.lock);
list_foreach (proc->mappings, mapping_link, mapping_link_tmp) {
struct proc_mapping* mapping =
list_entry (mapping_link, struct proc_mapping, proc_mappings_link);
uintptr_t m_end = mapping->vaddr + mapping->size;
/* check overlap */
if ((start_vaddr < m_end) && (end_vaddr > mapping->vaddr)) {
/* split in the middle */
if ((start_vaddr > mapping->vaddr) && (end_vaddr < m_end)) {
tail_mapping->vaddr = end_vaddr;
tail_mapping->paddr = mapping->paddr + (end_vaddr - mapping->vaddr);
tail_mapping->size = m_end - end_vaddr;
mapping->size = start_vaddr - mapping->vaddr;
list_insert_after (proc->mappings, &mapping->proc_mappings_link,
&tail_mapping->proc_mappings_link);
used_tail_mapping = true;
break;
} else if ((start_vaddr <= mapping->vaddr) && (end_vaddr < m_end)) { /* shrink left */
size_t diff = end_vaddr - mapping->vaddr;
mapping->vaddr += diff;
mapping->paddr += diff;
mapping->size -= diff;
} else if ((start_vaddr > mapping->vaddr) && (end_vaddr >= m_end)) { /* shrink right */
mapping->size = start_vaddr - mapping->vaddr;
} else { /* full overlap */
list_remove (proc->mappings, &mapping->proc_mappings_link);
free (mapping);
}
}
}
if (!used_tail_mapping)
free (tail_mapping);
for (uintptr_t vpage = start_vaddr; vpage < end_vaddr; vpage += PAGE_SIZE) {
mm_unmap_page (&proc->pd, vpage, 0);
}
spin_unlock (&proc->pd.lock);
return true;
}
struct elf_aux proc_load_segments (struct proc* proc, uint8_t* elf) {
struct elf_aux aux;
Elf64_Ehdr* ehdr = (Elf64_Ehdr*)elf;
aux.entry = ehdr->e_entry;
aux.phnum = ehdr->e_phnum;
aux.phent = ehdr->e_phentsize;
struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
for (uint64_t segment = 0; segment < ehdr->e_phnum; segment++) {
Elf64_Phdr* phdr =
(Elf64_Phdr*)((uintptr_t)elf + ehdr->e_phoff + (ehdr->e_phentsize * segment));
switch (phdr->p_type) {
case PT_PHDR: {
aux.phdr = (uint64_t)phdr->p_vaddr;
} break;
case PT_LOAD: {
uintptr_t v_addr = align_down (phdr->p_vaddr, PAGE_SIZE);
uintptr_t off = phdr->p_vaddr - v_addr;
size_t blks = div_align_up (phdr->p_memsz + off, PAGE_SIZE);
int rid = atomic_fetch_add (&proc->rids, 1);
struct proc_resource_mem_init mem_init = {.pages = blks};
struct proc_resource* r =
proc_create_resource (proc, rid, PR_MEM, RV_PRIVATE, (void*)&mem_init);
if (r == NULL) {
DEBUG ("pmm oom error while loading ELF segments! (tried to alloc %zu blks)\n", blks);
}
uintptr_t p_addr = r->u.mem.paddr;
memset ((void*)((uintptr_t)hhdm->offset + p_addr), 0, blks * PAGE_SIZE);
memcpy ((void*)((uintptr_t)hhdm->offset + p_addr + off),
(void*)((uintptr_t)elf + phdr->p_offset), phdr->p_filesz);
uint32_t pg_flags = MM_PG_USER | MM_PG_PRESENT;
if (phdr->p_flags & PF_W)
pg_flags |= MM_PG_RW;
proc_map (proc, p_addr, v_addr, blks, pg_flags);
} break;
}
}
return aux;
}
static struct proc* proc_spawn_rd (char* name) {
struct rd_file* rd_file = rd_get_file (name);
bool ok = proc_check_elf (rd_file->content);
DEBUG ("ELF magic %s\n", (ok ? "OK" : "BAD"));
if (!ok)
return NULL;
return proc_from_elf (rd_file->content);
}
static void proc_register (struct proc* proc, struct cpu* cpu) {
proc->cpu = cpu;
spin_lock (&proc_tree_lock);
spin_lock (&cpu->lock);
rbtree_insert (struct proc, &cpu->proc_run_q, &proc->cpu_run_q_link, cpu_run_q_link, pid);
rbtree_insert (struct proc, &proc_tree, &proc->proc_tree_link, proc_tree_link, pid);
if (cpu->proc_current == NULL)
cpu->proc_current = proc;
spin_unlock (&cpu->lock);
spin_unlock (&proc_tree_lock);
}
static struct proc* proc_find_sched (void) {
struct rb_node_link* node = NULL;
struct proc* start = thiscpu->proc_current;
struct proc* proc = NULL;
if (start)
node = &start->cpu_run_q_link;
if (!node)
rbtree_first (&thiscpu->proc_run_q, node);
if (!node)
return NULL;
struct rb_node_link* first = node;
do {
proc = rbtree_entry (node, struct proc, cpu_run_q_link);
if (atomic_load (&proc->state) == PROC_READY)
return proc;
rbtree_next (node, node);
if (!node) {
rbtree_first (&thiscpu->proc_run_q, node);
}
if (node == first)
break;
} while (node != first);
return NULL;
}
void proc_sched (void) {
struct proc* next = NULL;
spin_lock (&thiscpu->lock);
if (thiscpu->proc_run_q == NULL) {
spin_unlock (&thiscpu->lock);
goto idle;
}
next = proc_find_sched ();
if (next != NULL)
thiscpu->proc_current = next;
spin_unlock (&thiscpu->lock);
if (next != NULL && atomic_load (&next->state) == PROC_READY)
do_sched (next);
idle:
spin ();
}
void proc_kill (struct proc* proc) {
atomic_store (&proc->state, PROC_DEAD);
spin_lock (&proc_tree_lock);
rbtree_delete (&proc_tree, &proc->proc_tree_link);
spin_unlock (&proc_tree_lock);
struct cpu* cpu = proc->cpu;
spin_lock (&cpu->lock);
rbtree_delete (&cpu->proc_run_q, &proc->cpu_run_q_link);
spin_unlock (&cpu->lock);
DEBUG ("killed PID %d\n", proc->pid);
proc_cleanup (proc);
if (cpu == thiscpu)
proc_sched ();
else
cpu_request_sched (cpu);
}
static void proc_irq_sched (void* arg, void* regs) {
(void)arg, (void)regs;
proc_sched ();
}
static void proc_irq_cpu_request_sched (void* arg, void* regs) {
(void)arg, (void)regs;
proc_sched ();
}
void proc_init (void) {
struct proc* init = proc_spawn_rd ("init.exe");
proc_register (init, thiscpu);
#if defined(__x86_64__)
irq_attach (&proc_irq_sched, NULL, SCHED_PREEMPT_TIMER, IRQ_INTERRUPT_SAFE);
irq_attach (&proc_irq_cpu_request_sched, NULL, CPU_REQUEST_SCHED, IRQ_INTERRUPT_SAFE);
#endif
do_sched (init);
}