Files
my-os-project2/kernel/vmm/vmm.c

128 lines
3.5 KiB
C

#include <stddef.h>
#include <stdint.h>
#include "vmm/vmm.h"
#include "bootinfo/bootinfo.h"
#include "pmm/pmm.h"
#include "proc/proc.h"
#include "spinlock/spinlock.h"
#include "std/string.h"
#include "kprintf.h"
uint64_t KERNEL_CR3 = 0;
SpinLock spinlock;
uint64_t vmm_current_cr3(void) {
uint64_t cr3;
asm volatile("mov %%cr3, %0" : "=r"(cr3));
return cr3;
}
PgIndex vmm_pageindex(uint64_t vaddr) {
PgIndex ret;
ret.pml4 = (vaddr >> 39) & 0x1ff;
ret.pml3 = (vaddr >> 30) & 0x1ff;
ret.pml2 = (vaddr >> 21) & 0x1ff;
ret.pml1 = (vaddr >> 12) & 0x1ff;
return ret;
}
uint64_t *vmm_nexttable(uint64_t *table, uint64_t ent, bool alloc) {
uint64_t entry = table[ent];
uint64_t phys;
if (entry & VMM_PG_PRESENT) {
phys = entry & ~0xFFFULL;
} else {
if (!alloc) {
return NULL;
}
uint8_t *newphys = pmm_alloc(1);
phys = (uint64_t)newphys;
memset(VIRT(phys), 0, VMM_PAGE_SIZE);
table[ent] = phys | VMM_PG_USER | VMM_PG_RW | VMM_PG_PRESENT;
}
return (uint64_t *)((uint8_t *)VIRT(phys));
}
void vmm_map_page(uint64_t cr3phys, uint64_t virtaddr, uint64_t physaddr, uint32_t flags) {
uint64_t *pml4 = (uint64_t *)VIRT(cr3phys);
PgIndex pi = vmm_pageindex(virtaddr);
uint64_t *pml3 = vmm_nexttable(pml4, pi.pml4, true);
uint64_t *pml2 = vmm_nexttable(pml3, pi.pml3, true);
uint64_t *pml1 = vmm_nexttable(pml2, pi.pml2, true);
uint64_t *pte = &pml1[pi.pml1];
*pte = (physaddr & ~0xFFFULL) | ((uint64_t)flags & 0x7ULL);
}
void vmm_unmap_page(uint64_t cr3phys, uint64_t virtaddr) {
uint64_t *pml4 = (uint64_t *)VIRT(cr3phys);
PgIndex pi = vmm_pageindex(virtaddr);
uint64_t *pml3 = vmm_nexttable(pml4, pi.pml4, false);
uint64_t *pml2 = vmm_nexttable(pml3, pi.pml3, false);
uint64_t *pml1 = vmm_nexttable(pml2, pi.pml2, false);
uint64_t *pte = &pml1[pi.pml1];
*pte &= ~VMM_PG_PRESENT;
}
void vmm_map_range(uint64_t cr3phys, void *virtstart, void *physstart, size_t size, uint32_t flags) {
if (size % VMM_PAGE_SIZE != 0 || (uint64_t)virtstart % VMM_PAGE_SIZE != 0 || (uint64_t)physstart % VMM_PAGE_SIZE != 0) {
return;
}
spinlock_acquire(&spinlock);
uint8_t *vaddr = (uint8_t *)virtstart;
uint8_t *paddr = (uint8_t *)physstart;
uint8_t *end = (uint8_t *)virtstart + size;
for (; vaddr < end; vaddr += VMM_PAGE_SIZE, paddr += VMM_PAGE_SIZE) {
vmm_map_page(cr3phys, (uint64_t)vaddr, (uint64_t)paddr, flags);
}
spinlock_release(&spinlock);
}
void vmm_unmap_range(uint64_t cr3phys, void *virtstart, void *physstart, size_t size) {
if (size % VMM_PAGE_SIZE != 0 || (uint64_t)virtstart % VMM_PAGE_SIZE != 0 || (uint64_t)physstart % VMM_PAGE_SIZE != 0) {
return;
}
spinlock_acquire(&spinlock);
uint8_t *vaddr = (uint8_t *)virtstart;
uint8_t *end = vaddr + size;
for (; vaddr < end; vaddr += VMM_PAGE_SIZE) {
vmm_unmap_page(cr3phys, (uint64_t)vaddr);
}
spinlock_release(&spinlock);
}
void vmm_map_kern(uint64_t targetcr3) {
uint64_t *kcr3 = (uint64_t *)VIRT(KERNEL_CR3);
uint64_t *cr3 = (uint64_t *)VIRT(targetcr3);
for (size_t i = 0; i < 512; i++) {
cr3[i] = kcr3[i];
}
}
uint64_t vmm_userproc_pml4_phys(void) {
uint8_t *cr3phys = pmm_alloc(1);
uint64_t phys = (uint64_t)cr3phys;
memset(VIRT(phys), 0, VMM_PAGE_SIZE);
uint64_t *kcr3 = (uint64_t *)VIRT(KERNEL_CR3);
uint64_t *pml4 = (uint64_t *)VIRT(phys);
for (size_t i = 256; i < 512; i++) {
pml4[i] = kcr3[i];
}
return phys;
}
void vmm_init(void) {
spinlock_init(&spinlock);
KERNEL_CR3 = vmm_current_cr3();
}