#undef IS_WINDOWS #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) #define IS_WINDOWS 1 #endif #include #include #include #include #include #include #include #include #include #include #include #ifndef LIMINE_NO_BIOS #include "limine-bios-hdd.h" #endif static char *program_name = NULL; static void perror_wrap(const char *fmt, ...) { int old_errno = errno; fprintf(stderr, "%s: ", program_name); va_list args; va_start(args, fmt); vfprintf(stderr, fmt, args); va_end(args); fprintf(stderr, ": %s\n", strerror(old_errno)); } static void remove_arg(int *argc, char *argv[], int index) { for (int i = index; i < *argc - 1; i++) { argv[i] = argv[i + 1]; } (*argc)--; argv[*argc] = NULL; } #ifndef LIMINE_NO_BIOS static bool quiet = false; static int set_pos(FILE *stream, uint64_t pos) { if (sizeof(long) >= 8) { return fseek(stream, (long)pos, SEEK_SET); } long jump_size = (LONG_MAX / 2) + 1; long last_jump = pos % jump_size; uint64_t jumps = pos / jump_size; rewind(stream); for (uint64_t i = 0; i < jumps; i++) { if (fseek(stream, jump_size, SEEK_CUR) != 0) { return -1; } } if (fseek(stream, last_jump, SEEK_CUR) != 0) { return -1; } return 0; } #define SIZEOF_ARRAY(array) (sizeof(array) / sizeof(array[0])) #define DIV_ROUNDUP(a, b) (((a) + ((b) - 1)) / (b)) struct gpt_table_header { // the head char signature[8]; uint32_t revision; uint32_t header_size; uint32_t crc32; uint32_t _reserved0; // the partitioning info uint64_t my_lba; uint64_t alternate_lba; uint64_t first_usable_lba; uint64_t last_usable_lba; // the guid uint64_t disk_guid[2]; // entries related uint64_t partition_entry_lba; uint32_t number_of_partition_entries; uint32_t size_of_partition_entry; uint32_t partition_entry_array_crc32; }; struct gpt_entry { uint64_t partition_type_guid[2]; uint64_t unique_partition_guid[2]; uint64_t starting_lba; uint64_t ending_lba; uint64_t attributes; uint16_t partition_name[36]; }; struct gpt2mbr_type_conv { uint64_t gpt_type1; uint64_t gpt_type2; uint8_t mbr_type; }; // This table is very incomplete, but it should be enough for covering // all that matters for ISOHYBRIDs. // Of course, though, expansion is welcome. static struct gpt2mbr_type_conv gpt2mbr_type_conv_table[] = { { 0x11d2f81fc12a7328, 0x3bc93ec9a0004bba, 0xef }, // EFI system partition { 0x4433b9e5ebd0a0a2, 0xc79926b7b668c087, 0x07 }, // Microsoft basic data { 0x11aa000048465300, 0xacec4365300011aa, 0xaf }, // HFS/HFS+ }; static int gpt2mbr_type(uint64_t gpt_type1, uint64_t gpt_type2) { for (size_t i = 0; i < SIZEOF_ARRAY(gpt2mbr_type_conv_table); i++) { if (gpt2mbr_type_conv_table[i].gpt_type1 == gpt_type1 && gpt2mbr_type_conv_table[i].gpt_type2 == gpt_type2) { return gpt2mbr_type_conv_table[i].mbr_type; } } return -1; } static void lba2chs(uint8_t *chs, uint64_t lba) { // If LBA is too big to express, use a standard value for CHS. if (lba > 63 * 255 * 1024) { goto lba_too_big; } uint64_t cylinder = lba / (255 * 63); if (cylinder >= 1024) { lba_too_big: chs[0] = 0xfe; chs[1] = 0xff; chs[2] = 0xff; return; } uint64_t head = (lba / 63) % 255; uint64_t sector = (lba % 63) + 1; chs[0] = head; chs[1] = (cylinder >> 2) & 0xc0; // high 2 bits chs[1] |= sector & 0x3f; chs[2] = cylinder; // low 8 bits } static uint16_t endswap16(uint16_t value) { uint16_t ret = 0; ret |= (value >> 8) & 0x00ff; ret |= (value << 8) & 0xff00; return ret; } static uint32_t endswap32(uint32_t value) { uint32_t ret = 0; ret |= (value >> 24) & 0x000000ff; ret |= (value >> 8) & 0x0000ff00; ret |= (value << 8) & 0x00ff0000; ret |= (value << 24) & 0xff000000; return ret; } static uint64_t endswap64(uint64_t value) { uint64_t ret = 0; ret |= (value >> 56) & 0x00000000000000ff; ret |= (value >> 40) & 0x000000000000ff00; ret |= (value >> 24) & 0x0000000000ff0000; ret |= (value >> 8) & 0x00000000ff000000; ret |= (value << 8) & 0x000000ff00000000; ret |= (value << 24) & 0x0000ff0000000000; ret |= (value << 40) & 0x00ff000000000000; ret |= (value << 56) & 0xff00000000000000; return ret; } #ifdef __BYTE_ORDER__ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ #define bigendian true #else #define bigendian false #endif #else /* !__BYTE_ORDER__ */ static bool bigendian = false; #endif /* !__BYTE_ORDER__ */ #define ENDSWAP(VALUE) (bigendian ? ( \ sizeof(VALUE) == 1 ? (VALUE) : \ sizeof(VALUE) == 2 ? endswap16(VALUE) : \ sizeof(VALUE) == 4 ? endswap32(VALUE) : \ sizeof(VALUE) == 8 ? endswap64(VALUE) : (abort(), 1) \ ) : (VALUE)) static enum { CACHE_CLEAN, CACHE_DIRTY } cache_state; static uint64_t cached_block; static uint8_t *cache = NULL; static FILE *device = NULL; static size_t block_size; static bool device_init(void) { size_t guesses[] = { 512, 2048, 4096 }; for (size_t i = 0; i < SIZEOF_ARRAY(guesses); i++) { void *tmp = realloc(cache, guesses[i]); if (tmp == NULL) { perror_wrap("error: device_init(): realloc()"); return false; } cache = tmp; rewind(device); size_t ret = fread(cache, guesses[i], 1, device); if (ret != 1) { continue; } block_size = guesses[i]; if (!quiet) { fprintf(stderr, "Physical block size of %zu bytes.\n", block_size); } cache_state = CACHE_CLEAN; cached_block = 0; return true; } fprintf(stderr, "error: device_init(): Couldn't determine block size of device.\n"); return false; } static bool device_flush_cache(void) { if (cache_state == CACHE_CLEAN) return true; if (set_pos(device, cached_block * block_size) != 0) { perror_wrap("error: device_flush_cache(): set_pos()"); return false; } size_t ret = fwrite(cache, block_size, 1, device); if (ret != 1) { if (ferror(device)) { perror_wrap("error: device_flush_cache(): fwrite()"); } return false; } cache_state = CACHE_CLEAN; return true; } static bool device_cache_block(uint64_t block) { if (cached_block == block) return true; if (cache_state == CACHE_DIRTY) { if (!device_flush_cache()) return false; } if (set_pos(device, block * block_size) != 0) { perror_wrap("error: device_cache_block(): set_pos()"); return false; } size_t ret = fread(cache, block_size, 1, device); if (ret != 1) { if (ferror(device)) { perror_wrap("error: device_cache_block(): fread()"); } return false; } cached_block = block; return true; } struct uninstall_data { void *data; uint64_t loc; uint64_t count; }; #define UNINSTALL_DATA_MAX 256 static bool uninstalling = false; static struct uninstall_data uninstall_data[UNINSTALL_DATA_MAX]; static struct uninstall_data uninstall_data_rev[UNINSTALL_DATA_MAX]; static uint64_t uninstall_data_i = 0; static const char *uninstall_file = NULL; static void reverse_uninstall_data(void) { for (size_t i = 0, j = uninstall_data_i - 1; i < uninstall_data_i; i++, j--) { uninstall_data_rev[j] = uninstall_data[i]; } memcpy(uninstall_data, uninstall_data_rev, uninstall_data_i * sizeof(struct uninstall_data)); } static void free_uninstall_data(void) { for (size_t i = 0; i < uninstall_data_i; i++) { free(uninstall_data[i].data); } } static bool store_uninstall_data(const char *filename) { if (!quiet) { fprintf(stderr, "Storing uninstall data to file: `%s`...\n", filename); } FILE *udfile = fopen(filename, "wb"); if (udfile == NULL) { perror_wrap("error: `%s`", filename); goto error; } if (fwrite(&uninstall_data_i, sizeof(uint64_t), 1, udfile) != 1) { goto fwrite_error; } for (size_t i = 0; i < uninstall_data_i; i++) { if (fwrite(&uninstall_data[i].loc, sizeof(uint64_t), 1, udfile) != 1) { goto fwrite_error; } if (fwrite(&uninstall_data[i].count, sizeof(uint64_t), 1, udfile) != 1) { goto fwrite_error; } if (fwrite(uninstall_data[i].data, uninstall_data[i].count, 1, udfile) != 1) { goto fwrite_error; } } fclose(udfile); return true; fwrite_error: perror_wrap("error: store_uninstall_data(): fwrite()"); error: if (udfile != NULL) { fclose(udfile); } return false; } static bool load_uninstall_data(const char *filename) { if (!quiet) { fprintf(stderr, "Loading uninstall data from file: `%s`...\n", filename); } FILE *udfile = fopen(filename, "rb"); if (udfile == NULL) { perror_wrap("error: `%s`", filename); goto error; } if (fread(&uninstall_data_i, sizeof(uint64_t), 1, udfile) != 1) { goto fread_error; } for (size_t i = 0; i < uninstall_data_i; i++) { if (fread(&uninstall_data[i].loc, sizeof(uint64_t), 1, udfile) != 1) { goto fread_error; } if (fread(&uninstall_data[i].count, sizeof(uint64_t), 1, udfile) != 1) { goto fread_error; } uninstall_data[i].data = malloc(uninstall_data[i].count); if (uninstall_data[i].data == NULL) { perror_wrap("error: load_uninstall_data(): malloc()"); goto error; } if (fread(uninstall_data[i].data, uninstall_data[i].count, 1, udfile) != 1) { goto fread_error; } } fclose(udfile); return true; fread_error: perror_wrap("error: load_uninstall_data(): fread()"); error: if (udfile != NULL) { fclose(udfile); } return false; } static bool _device_read(void *_buffer, uint64_t loc, size_t count) { uint8_t *buffer = _buffer; uint64_t progress = 0; while (progress < count) { uint64_t block = (loc + progress) / block_size; if (!device_cache_block(block)) { return false; } uint64_t chunk = count - progress; uint64_t offset = (loc + progress) % block_size; if (chunk > block_size - offset) chunk = block_size - offset; memcpy(buffer + progress, &cache[offset], chunk); progress += chunk; } return true; } static bool _device_write(const void *_buffer, uint64_t loc, size_t count) { if (uninstalling) { goto skip_save; } if (uninstall_data_i >= UNINSTALL_DATA_MAX) { fprintf(stderr, "error: Too many uninstall data entries! Please report this bug upstream.\n"); return false; } struct uninstall_data *ud = &uninstall_data[uninstall_data_i]; ud->data = malloc(count); if (ud->data == NULL) { perror_wrap("error: _device_write(): malloc()"); return false; } if (!_device_read(ud->data, loc, count)) { return false; } ud->loc = loc; ud->count = count; skip_save:; const uint8_t *buffer = _buffer; uint64_t progress = 0; while (progress < count) { uint64_t block = (loc + progress) / block_size; if (!device_cache_block(block)) { return false; } uint64_t chunk = count - progress; uint64_t offset = (loc + progress) % block_size; if (chunk > block_size - offset) chunk = block_size - offset; memcpy(&cache[offset], buffer + progress, chunk); cache_state = CACHE_DIRTY; progress += chunk; } if (!uninstalling) { uninstall_data_i++; } return true; } static bool uninstall(bool quiet_arg) { bool print_cache_flush_fail = false; bool print_write_fail = false; bool ret = true; uninstalling = true; cache_state = CACHE_CLEAN; cached_block = (uint64_t)-1; for (size_t i = 0; i < uninstall_data_i; i++) { struct uninstall_data *ud = &uninstall_data[i]; bool retry = false; while (!_device_write(ud->data, ud->loc, ud->count)) { if (retry) { fprintf(stderr, "warning: Retry failed.\n"); print_write_fail = true; break; } if (!quiet) { fprintf(stderr, "warning: Uninstall data index %zu failed to write, retrying...\n", i); } if (!device_flush_cache()) { print_cache_flush_fail = true; } cache_state = CACHE_CLEAN; cached_block = (uint64_t)-1; retry = true; } } if (!device_flush_cache()) { print_cache_flush_fail = true; } if (print_write_fail) { fprintf(stderr, "error: Some data failed to be uninstalled correctly.\n"); ret = false; } if (print_cache_flush_fail) { fprintf(stderr, "error: Device cache flush failure. Uninstall may be incomplete.\n"); ret = false; } if (ret == true && !quiet && !quiet_arg) { fprintf(stderr, "Uninstall data restored successfully.\n"); } return ret; } #define device_read(BUFFER, LOC, COUNT) \ do { \ if (!_device_read(BUFFER, LOC, COUNT)) \ goto cleanup; \ } while (0) #define device_write(BUFFER, LOC, COUNT) \ do { \ if (!_device_write(BUFFER, LOC, COUNT)) \ goto cleanup; \ } while (0) static void bios_install_usage(void) { printf("usage: %s bios-install [GPT partition index]\n", program_name); printf("\n"); printf(" --force Force installation even if the safety checks fail\n"); printf(" (DANGEROUS!)\n"); printf("\n"); printf(" --uninstall Reverse the entire install procedure\n"); printf("\n"); printf(" --uninstall-data-file=\n"); printf(" Set the input (for --uninstall) or output file\n"); printf(" name of the file which contains uninstall data\n"); printf("\n"); printf(" --no-gpt-to-mbr-isohybrid-conversion\n"); printf(" Do not automatically convert a GUID partition table (GPT)\n"); printf(" found on an ISOHYBRID image into an MBR partition table\n"); printf(" (which is done for better hardware compatibility)\n"); printf("\n"); printf(" --quiet Do not print verbose diagnostic messages\n"); printf("\n"); printf(" --help | -h Display this help message\n"); printf("\n"); } static bool validate_or_force(uint64_t offset, bool force, bool *err) { *err = false; char hintc[64]; device_read(hintc, offset + 3, 4); if (memcmp(hintc, "NTFS", 4) == 0) { if (!force) { return false; } else { memset(hintc, 0, 4); device_write(hintc, offset + 3, 4); } } device_read(hintc, offset + 54, 3); if (memcmp(hintc, "FAT", 3) == 0) { if (!force) { return false; } else { memset(hintc, 0, 5); device_write(hintc, offset + 54, 5); } } device_read(hintc, offset + 82, 3); if (memcmp(hintc, "FAT", 3) == 0) { if (!force) { return false; } else { memset(hintc, 0, 5); device_write(hintc, offset + 82, 5); } } device_read(hintc, offset + 3, 5); if (memcmp(hintc, "FAT32", 5) == 0) { if (!force) { return false; } else { memset(hintc, 0, 5); device_write(hintc, offset + 3, 5); } } uint16_t hint16 = 0; device_read(&hint16, offset + 1080, sizeof(uint16_t)); hint16 = ENDSWAP(hint16); if (hint16 == 0xef53) { if (!force) { return false; } else { hint16 = 0; hint16 = ENDSWAP(hint16); device_write(&hint16, offset + 1080, sizeof(uint16_t)); } } return true; cleanup: *err = true; return false; } static int bios_install(int argc, char *argv[]) { int ok = EXIT_FAILURE; bool force = false; bool gpt2mbr_allowed = true; bool uninstall_mode = false; const uint8_t *bootloader_img = binary_limine_hdd_bin_data; size_t bootloader_file_size = sizeof(binary_limine_hdd_bin_data); uint8_t orig_mbr[70], timestamp[6]; const char *part_ndx = NULL; #ifndef __BYTE_ORDER__ uint32_t endcheck = 0x12345678; uint8_t endbyte = *((uint8_t *)&endcheck); bigendian = endbyte == 0x12; #endif if (argc < 2) { bios_install_usage(); #ifdef IS_WINDOWS system("pause"); #endif return EXIT_FAILURE; } for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) { bios_install_usage(); return EXIT_SUCCESS; } else if (strcmp(argv[i], "--quiet") == 0) { quiet = true; } else if (strcmp(argv[i], "--force") == 0) { if (force && !quiet) { fprintf(stderr, "warning: --force already set.\n"); } force = true; } else if (strcmp(argv[i], "--no-gpt-to-mbr-isohybrid-conversion") == 0) { gpt2mbr_allowed = false; } else if (strcmp(argv[i], "--uninstall") == 0) { if (uninstall_mode && !quiet) { fprintf(stderr, "warning: --uninstall already set.\n"); } uninstall_mode = true; } else if (memcmp(argv[i], "--uninstall-data-file=", 21) == 0) { if (uninstall_file != NULL && !quiet) { fprintf(stderr, "warning: --uninstall-data-file already set. Overriding...\n"); } uninstall_file = argv[i] + 21; if (strlen(uninstall_file) == 0) { fprintf(stderr, "error: Uninstall data file has a zero-length name!\n"); return EXIT_FAILURE; } } else { if (device != NULL) { // [GPT partition index] part_ndx = argv[i]; // TODO: Make this non-positional? } else if ((device = fopen(argv[i], "r+b")) == NULL) { // perror_wrap("error: `%s`", argv[i]); return EXIT_FAILURE; } } } if (device == NULL) { fprintf(stderr, "error: No device specified\n"); bios_install_usage(); return EXIT_FAILURE; } if (!device_init()) { goto uninstall_mode_cleanup; } if (uninstall_mode) { if (uninstall_file == NULL) { fprintf(stderr, "error: Uninstall mode set but no --uninstall-data-file=... passed.\n"); goto uninstall_mode_cleanup; } if (!load_uninstall_data(uninstall_file)) { goto uninstall_mode_cleanup; } if (uninstall(false) == false) { ok = EXIT_FAILURE; } else { ok = EXIT_SUCCESS; } goto uninstall_mode_cleanup; } // Probe for GPT and logical block size int gpt = 0; struct gpt_table_header gpt_header; uint64_t lb_guesses[] = { 512, 4096 }; uint64_t lb_size = 0; for (size_t i = 0; i < SIZEOF_ARRAY(lb_guesses); i++) { device_read(&gpt_header, lb_guesses[i], sizeof(struct gpt_table_header)); if (!strncmp(gpt_header.signature, "EFI PART", 8)) { lb_size = lb_guesses[i]; gpt = 1; if (!quiet) { fprintf(stderr, "Installing to GPT. Logical block size of %" PRIu64 " bytes.\n", lb_guesses[i]); } break; } } struct gpt_table_header secondary_gpt_header; if (gpt) { if (!quiet) { fprintf(stderr, "Secondary header at LBA 0x%" PRIx64 ".\n", ENDSWAP(gpt_header.alternate_lba)); } device_read(&secondary_gpt_header, lb_size * ENDSWAP(gpt_header.alternate_lba), sizeof(struct gpt_table_header)); if (!strncmp(secondary_gpt_header.signature, "EFI PART", 8)) { if (!quiet) { fprintf(stderr, "Secondary header valid.\n"); } } else { fprintf(stderr, "error: Secondary header not valid, aborting.\n"); goto cleanup; } } // Check if this is an ISO w/ a GPT, in which case try converting it // to MBR for improved compatibility with a whole range of hardware that // does not like booting off of GPT in BIOS or CSM mode, and other // broken hardware. if (gpt && gpt2mbr_allowed == true) { char iso_signature[5]; device_read(iso_signature, 32769, 5); if (strncmp(iso_signature, "CD001", 5) != 0) { goto no_mbr_conv; } if (!quiet) { fprintf(stderr, "Detected ISOHYBRID with a GUID partition table (GPT).\n"); fprintf(stderr, "Converting to MBR for improved compatibility...\n"); } // Gather the (up to 4) GPT partition to convert. struct { uint64_t lba_start; uint64_t lba_end; uint8_t chs_start[3]; uint8_t chs_end[3]; uint8_t type; } part_to_conv[4]; size_t part_to_conv_i = 0; for (int64_t i = 0; i < (int64_t)ENDSWAP(gpt_header.number_of_partition_entries); i++) { struct gpt_entry gpt_entry; device_read(&gpt_entry, (ENDSWAP(gpt_header.partition_entry_lba) * lb_size) + (i * ENDSWAP(gpt_header.size_of_partition_entry)), sizeof(struct gpt_entry)); if (gpt_entry.unique_partition_guid[0] == 0 && gpt_entry.unique_partition_guid[1] == 0) { continue; } if (ENDSWAP(gpt_entry.starting_lba) > UINT32_MAX) { if (!quiet) { fprintf(stderr, "Starting LBA of partition %" PRIi64 " is greater than UINT32_MAX, will not convert GPT.\n", i + 1); } goto no_mbr_conv; } part_to_conv[part_to_conv_i].lba_start = ENDSWAP(gpt_entry.starting_lba); lba2chs(part_to_conv[part_to_conv_i].chs_start, part_to_conv[part_to_conv_i].lba_start); if (ENDSWAP(gpt_entry.ending_lba) > UINT32_MAX) { if (!quiet) { fprintf(stderr, "Ending LBA of partition %" PRIi64 " is greater than UINT32_MAX, will not convert GPT.\n", i + 1); } goto no_mbr_conv; } part_to_conv[part_to_conv_i].lba_end = ENDSWAP(gpt_entry.ending_lba); lba2chs(part_to_conv[part_to_conv_i].chs_end, part_to_conv[part_to_conv_i].lba_end); int type = gpt2mbr_type(ENDSWAP(gpt_entry.partition_type_guid[0]), ENDSWAP(gpt_entry.partition_type_guid[1])); if (type == -1) { if (!quiet) { fprintf(stderr, "Cannot convert partition type for partition %" PRIi64 ", will not convert GPT.\n", i + 1); } goto no_mbr_conv; } if (part_to_conv_i == 4) { if (!quiet) { fprintf(stderr, "GPT contains more than 4 partitions, will not convert.\n"); } goto no_mbr_conv; } part_to_conv[part_to_conv_i].type = type; part_to_conv_i++; } // Nuke the GPTs. void *empty_lba = calloc(1, lb_size); if (empty_lba == NULL) { perror_wrap("error: bios_install(): malloc()"); goto cleanup; } // ... nuke primary GPT + protective MBR. for (size_t i = 0; i < 34; i++) { device_write(empty_lba, i * lb_size, lb_size); } // ... nuke secondary GPT. for (size_t i = 0; i < 33; i++) { device_write(empty_lba, ((ENDSWAP(gpt_header.alternate_lba) - 32) + i) * lb_size, lb_size); } free(empty_lba); // We're no longer GPT. gpt = 0; // Generate pseudorandom MBR disk ID. srand(time(NULL)); for (size_t i = 0; i < 4; i++) { uint8_t r = rand(); device_write(&r, 0x1b8 + i, 1); } // Write out the partition entries. for (size_t i = 0; i < part_to_conv_i; i++) { device_write(&part_to_conv[i].type, 0x1be + i * 16 + 0x04, 1); uint32_t lba_start = ENDSWAP(part_to_conv[i].lba_start); device_write(&lba_start, 0x1be + i * 16 + 0x08, 4); uint32_t sect_count = ENDSWAP((part_to_conv[i].lba_end - part_to_conv[i].lba_start) + 1); device_write(§_count, 0x1be + i * 16 + 0x0c, 4); device_write(part_to_conv[i].chs_start, 0x1be + i * 16 + 1, 3); device_write(part_to_conv[i].chs_end, 0x1be + i * 16 + 5, 3); } if (!quiet) { fprintf(stderr, "Conversion successful.\n"); } } no_mbr_conv:; int mbr = 0; if (gpt == 0) { // Do all sanity checks on MBR mbr = 1; uint8_t hint8 = 0; uint32_t hint32 = 0; bool any_active = false; device_read(&hint8, 446, sizeof(uint8_t)); if (hint8 != 0x00 && hint8 != 0x80) { if (!force) { mbr = 0; } else { hint8 &= 0x80; device_write(&hint8, 446, sizeof(uint8_t)); } } any_active = any_active || (hint8 & 0x80) != 0; device_read(&hint8, 446 + 4, sizeof(uint8_t)); if (hint8 != 0x00) { device_read(&hint32, 446 + 8, sizeof(uint32_t)); hint32 = ENDSWAP(hint32); if (hint32 < 63) { goto part_too_low; } } device_read(&hint8, 462, sizeof(uint8_t)); if (hint8 != 0x00 && hint8 != 0x80) { if (!force) { mbr = 0; } else { hint8 &= 0x80; device_write(&hint8, 462, sizeof(uint8_t)); } } any_active = any_active || (hint8 & 0x80) != 0; device_read(&hint8, 462 + 4, sizeof(uint8_t)); if (hint8 != 0x00) { device_read(&hint32, 462 + 8, sizeof(uint32_t)); hint32 = ENDSWAP(hint32); if (hint32 < 63) { goto part_too_low; } } device_read(&hint8, 478, sizeof(uint8_t)); if (hint8 != 0x00 && hint8 != 0x80) { if (!force) { mbr = 0; } else { hint8 &= 0x80; device_write(&hint8, 478, sizeof(uint8_t)); } } any_active = any_active || (hint8 & 0x80) != 0; device_read(&hint8, 478 + 4, sizeof(uint8_t)); if (hint8 != 0x00) { device_read(&hint32, 478 + 8, sizeof(uint32_t)); hint32 = ENDSWAP(hint32); if (hint32 < 63) { goto part_too_low; } } device_read(&hint8, 494, sizeof(uint8_t)); if (hint8 != 0x00 && hint8 != 0x80) { if (!force) { mbr = 0; } else { hint8 &= 0x80; device_write(&hint8, 494, sizeof(uint8_t)); } } any_active = any_active || (hint8 & 0x80) != 0; device_read(&hint8, 494 + 4, sizeof(uint8_t)); if (hint8 != 0x00) { device_read(&hint32, 494 + 8, sizeof(uint32_t)); hint32 = ENDSWAP(hint32); if (hint32 < 63) { goto part_too_low; } } if (0) { part_too_low: fprintf(stderr, "error: A partition's start sector is less than 63, aborting.\n"); goto cleanup; } if (mbr) { bool err; mbr = validate_or_force(0, force, &err); if (err) { goto cleanup; } } if (mbr && !any_active) { if (!quiet) { fprintf(stderr, "No active partition found, some systems may not boot.\n"); fprintf(stderr, "Setting partition 1 as active to work around the issue...\n"); } hint8 = 0x80; device_write(&hint8, 446, sizeof(uint8_t)); } } if (gpt == 0 && mbr == 0) { fprintf(stderr, "error: Could not determine if the device has a valid partition table.\n"); fprintf(stderr, " Please ensure the device has a valid MBR or GPT.\n"); fprintf(stderr, " Alternatively, pass `--force` to override these checks.\n"); fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n"); goto cleanup; } // Default location of stage2 for MBR (in post MBR gap) uint64_t stage2_loc = 512; if (gpt) { struct gpt_entry gpt_entry; uint32_t partition_num; if (part_ndx != NULL) { sscanf(part_ndx, "%" SCNu32, &partition_num); partition_num--; if (partition_num > ENDSWAP(gpt_header.number_of_partition_entries)) { fprintf(stderr, "error: Partition number is too large.\n"); goto cleanup; } device_read(&gpt_entry, (ENDSWAP(gpt_header.partition_entry_lba) * lb_size) + (partition_num * ENDSWAP(gpt_header.size_of_partition_entry)), sizeof(struct gpt_entry)); if (gpt_entry.unique_partition_guid[0] == 0 && gpt_entry.unique_partition_guid[1] == 0) { fprintf(stderr, "error: No such partition: %" PRIu32 ".\n", partition_num + 1); goto cleanup; } if (!force && memcmp("Hah!IdontNeedEFI", &gpt_entry.partition_type_guid, 16) != 0) { fprintf(stderr, "error: Chosen partition for BIOS boot code is not of BIOS boot partition type.\n"); fprintf(stderr, " Pass `--force` to override this check.\n"); fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n"); goto cleanup; } } else { // Try to autodetect the BIOS boot partition for (partition_num = 0; partition_num < ENDSWAP(gpt_header.number_of_partition_entries); partition_num++) { device_read(&gpt_entry, (ENDSWAP(gpt_header.partition_entry_lba) * lb_size) + (partition_num * ENDSWAP(gpt_header.size_of_partition_entry)), sizeof(struct gpt_entry)); if (memcmp("Hah!IdontNeedEFI", &gpt_entry.partition_type_guid, 16) == 0) { if (!quiet) { fprintf(stderr, "Autodetected partition %" PRIu32 " as BIOS boot partition.\n", partition_num + 1); } goto bios_boot_autodetected; } } fprintf(stderr, "error: Installing to a GPT device, but no BIOS boot partition specified or\n"); fprintf(stderr, " detected.\n"); goto cleanup; } bios_boot_autodetected: if (((ENDSWAP(gpt_entry.ending_lba) - ENDSWAP(gpt_entry.starting_lba)) + 1) * lb_size < 32768) { fprintf(stderr, "error: Partition %" PRIu32 " is smaller than 32KiB.\n", partition_num + 1); goto cleanup; } stage2_loc = ENDSWAP(gpt_entry.starting_lba) * lb_size; bool err; bool valid = validate_or_force(stage2_loc, force, &err); if (err) { goto cleanup; } if (!valid) { fprintf(stderr, "error: The partition selected to install the BIOS boot code to contains\n"); fprintf(stderr, " a recognised filesystem.\n"); fprintf(stderr, " Pass `--force` to override these checks.\n"); fprintf(stderr, " **ONLY DO THIS AT YOUR OWN RISK, DATA LOSS MAY OCCUR!**\n"); goto cleanup; } if (!quiet) { fprintf(stderr, "Installing BIOS boot code to partition %" PRIu32 ".\n", partition_num + 1); } } else { if (!quiet) { fprintf(stderr, "Installing to MBR.\n"); } } if (!quiet) { fprintf(stderr, "Stage 2 to be located at byte offset 0x%" PRIx64 ".\n", stage2_loc); } // Save original timestamp device_read(timestamp, 218, 6); // Save the original partition table of the device device_read(orig_mbr, 440, 70); // Write the bootsector from the bootloader to the device device_write(&bootloader_img[0], 0, 512); // Write the rest of stage 2 to the device device_write(&bootloader_img[512], stage2_loc, bootloader_file_size - 512); // Hardcode in the bootsector the location of stage 2 stage2_loc = ENDSWAP(stage2_loc); device_write(&stage2_loc, 0x1a4, sizeof(uint64_t)); // Write back timestamp device_write(timestamp, 218, 6); // Write back the saved partition table to the device device_write(orig_mbr, 440, 70); if (!device_flush_cache()) goto cleanup; if (!quiet) { fprintf(stderr, "Reminder: Remember to copy the limine-bios.sys file in either\n" " the root, /boot, /limine, or /boot/limine directories of\n" " one of the partitions on the device, or boot will fail!\n"); fprintf(stderr, "Limine BIOS stages installed successfully.\n"); } ok = EXIT_SUCCESS; cleanup: reverse_uninstall_data(); if (ok != EXIT_SUCCESS) { // If we failed, attempt to reverse install process fprintf(stderr, "Install failed, undoing work...\n"); uninstall(true); } else if (uninstall_file != NULL) { store_uninstall_data(uninstall_file); } uninstall_mode_cleanup: free_uninstall_data(); if (cache) free(cache); if (device != NULL) fclose(device); return ok; } #endif #define CONFIG_B2SUM_SIGNATURE "++CONFIG_B2SUM_SIGNATURE++" static void enroll_config_usage(void) { printf("usage: %s enroll-config \n", program_name); printf("\n"); printf(" --reset Remove enrolled BLAKE2B, will not check config integrity\n"); printf("\n"); printf(" --quiet Do not print verbose diagnostic messages\n"); printf("\n"); printf(" --help | -h Display this help message\n"); printf("\n"); } static int enroll_config(int argc, char *argv[]) { int ret = EXIT_FAILURE; char *bootloader = NULL; FILE *bootloader_file = NULL; bool quiet = false; bool reset = false; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0) { enroll_config_usage(); return EXIT_SUCCESS; } else if (strcmp(argv[i], "--quiet") == 0) { remove_arg(&argc, argv, i); quiet = true; } else if (strcmp(argv[i], "--reset") == 0) { remove_arg(&argc, argv, i); reset = true; } } if (argc <= (reset ? 1 : 2)) { enroll_config_usage(); #ifdef IS_WINDOWS system("pause"); #endif return EXIT_FAILURE; } if (!reset && strlen(argv[2]) != 128) { fprintf(stderr, "error: BLAKE2B specified is not 128 characters long.\n"); goto cleanup; } bootloader_file = fopen(argv[1], "r+b"); if (bootloader_file == NULL) { perror_wrap("error: `%s`", argv[1]); goto cleanup; } if (fseek(bootloader_file, 0, SEEK_END) != 0) { perror_wrap("error: enroll_config(): fseek()"); goto cleanup; } size_t bootloader_size = ftell(bootloader_file); rewind(bootloader_file); bootloader = malloc(bootloader_size); if (bootloader == NULL) { perror_wrap("error: enroll_config(): malloc()"); goto cleanup; } if (fread(bootloader, bootloader_size, 1, bootloader_file) != 1) { perror_wrap("error: enroll_config(): fread()"); goto cleanup; } char *checksum_loc = NULL; size_t checked_count = 0; const char *config_b2sum_sign = CONFIG_B2SUM_SIGNATURE; for (size_t i = 0; i < bootloader_size - ((sizeof(CONFIG_B2SUM_SIGNATURE) - 1) + 128) + 1; i++) { if (bootloader[i] != config_b2sum_sign[checked_count]) { checked_count = 0; continue; } checked_count++; if (checked_count == sizeof(CONFIG_B2SUM_SIGNATURE) - 1) { checksum_loc = &bootloader[i + 1]; break; } } if (checksum_loc == NULL) { fprintf(stderr, "error: Checksum location not found in provided executable.\n"); goto cleanup; } if (!reset) { memcpy(checksum_loc, argv[2], 128); } else { memset(checksum_loc, '0', 128); } if (fseek(bootloader_file, 0, SEEK_SET) != 0) { perror_wrap("error: enroll_config(): fseek()"); goto cleanup; } if (fwrite(bootloader, bootloader_size, 1, bootloader_file) != 1) { perror_wrap("error: enroll_config(): fwrite()"); goto cleanup; } if (!quiet) { fprintf(stderr, "Config file BLAKE2B successfully %s.\n", reset ? "reset" : "enrolled"); } ret = EXIT_SUCCESS; cleanup: if (bootloader != NULL) { free(bootloader); } if (bootloader_file != NULL) { fclose(bootloader_file); } return ret; } #define LIMINE_VERSION "10.5.0" #define LIMINE_COPYRIGHT "Copyright (C) 2019-2025 Mintsuki and contributors." static void version_usage(void) { printf("usage: %s version [options...]\n", program_name); printf("\n"); printf(" --version-only Only print the version number without licensing info\n"); printf(" and other distractions\n"); printf("\n"); printf(" --help | -h Display this help message\n"); printf("\n"); } static int version(int argc, char *argv[]) { if (argc >= 2) { if (strcmp(argv[1], "--help") == 0) { version_usage(); return EXIT_SUCCESS; } else if (strcmp(argv[1], "--version-only") == 0) { puts(LIMINE_VERSION); return EXIT_SUCCESS; } } puts("Limine " LIMINE_VERSION); puts(LIMINE_COPYRIGHT); puts("Limine is distributed under the terms of the BSD-2-Clause license."); puts("There is ABSOLUTELY NO WARRANTY, to the extent permitted by law."); return EXIT_SUCCESS; } static void general_usage(void) { printf("usage: %s \n", program_name); printf("\n"); printf(" --print-datadir Print the directory containing the bootloader files\n"); printf("\n"); printf(" --version Print the Limine version (like the `version` command)\n"); printf("\n"); printf(" --help | -h Display this help message\n"); printf("\n"); printf("Commands: `help`, `version`, `bios-install`, `enroll-config`\n"); printf("Use `--help` after specifying the command for command-specific help.\n"); } static int print_datadir(void) { #ifdef LIMINE_DATADIR puts(LIMINE_DATADIR); return EXIT_SUCCESS; #else fprintf(stderr, "error: Cannot print datadir for `limine` built standalone.\n"); return EXIT_FAILURE; #endif } int main(int argc, char *argv[]) { program_name = argv[0]; if (argc <= 1) { general_usage(); return EXIT_FAILURE; } if (strcmp(argv[1], "help") == 0 || strcmp(argv[1], "--help") == 0 || strcmp(argv[1], "-h") == 0) { general_usage(); return EXIT_SUCCESS; } else if (strcmp(argv[1], "bios-install") == 0) { #ifndef LIMINE_NO_BIOS return bios_install(argc - 1, &argv[1]); #else fprintf(stderr, "error: Limine has been compiled without BIOS support.\n"); return EXIT_FAILURE; #endif } else if (strcmp(argv[1], "enroll-config") == 0) { return enroll_config(argc - 1, &argv[1]); } else if (strcmp(argv[1], "--print-datadir") == 0) { return print_datadir(); } else if (strcmp(argv[1], "version") == 0 || strcmp(argv[1], "--version") == 0) { return version(argc - 1, &argv[1]); } general_usage(); return EXIT_FAILURE; }