Compare commits

...

2 Commits

Author SHA1 Message Date
11a1eb52aa Move status codes into a separate header
All checks were successful
Build documentation / build-and-deploy (push) Successful in 36s
2026-01-16 19:07:32 +01:00
a054257336 Port liballoc to userspace 2026-01-16 18:50:40 +01:00
12 changed files with 553 additions and 41 deletions

13
include/m/status.h Normal file
View File

@@ -0,0 +1,13 @@
#ifndef _M_STATUS_H
#define _M_STATUS_H
#define ST_OK 0
#define ST_SYSCALL_NOT_FOUND 1
#define ST_UNALIGNED 2
#define ST_OOM_ERROR 3
#define ST_NOT_FOUND 4
#define ST_BAD_ADDRESS_SPACE 5
#define ST_PERMISSION_ERROR 6
#define ST_BAD_RESOURCE 7
#endif // _M_STATUS_H

View File

@@ -13,13 +13,4 @@
#define SYS_PROC_SPAWN_THREAD 10
#define SYS_PROC_SCHED 11
#define SR_OK 0
#define SR_SYSCALL_NOT_FOUND 1
#define SR_UNALIGNED 2
#define SR_OOM_ERROR 3
#define SR_NOT_FOUND 4
#define SR_BAD_ADDRESS_SPACE 5
#define SR_PERMISSION_ERROR 6
#define SR_BAD_RESOURCE 7
#endif // _M_SYSCALL_DEFS_H

View File

@@ -1,5 +1,7 @@
#include <alloc/liballoc.h>
#include <limits.h>
#include <m/proc.h>
#include <m/status.h>
#include <stddef.h>
#include <stdint.h>
#include <string/string.h>
@@ -16,17 +18,14 @@ void mythread (void) {
}
}
void make_thread (void* fn) {
size_t stack_pages = 256;
size_t stack_size = PAGE_SIZE * stack_pages;
int make_thread (void (*fn) (void)) {
size_t stack_size = 256 * PAGE_SIZE;
void* stack = malloc (stack_size);
if (stack == NULL)
return -ST_OOM_ERROR;
uintptr_t out_paddr;
int mem_rid = proc_create_resource_mem (100, stack_pages, RV_PRIVATE, &out_paddr);
proc_map (out_paddr, PROC_MAP_BASE, stack_pages, PM_PRESENT | PM_RW | PM_USER);
memset ((void*)PROC_MAP_BASE, 0, stack_size);
uintptr_t vstack_top = PROC_MAP_BASE + stack_size;
proc_spawn_thread (vstack_top, stack_size, fn);
uintptr_t stack_top = (uintptr_t)stack + stack_size;
return proc_spawn_thread (stack_top, stack_size, (void*)fn);
}
void app_main (void) {

View File

@@ -3,6 +3,7 @@
#include <amd64/mm.h>
#include <amd64/msr-index.h>
#include <amd64/msr.h>
#include <m/status.h>
#include <m/syscall_defs.h>
#include <proc/proc.h>
#include <sys/debug.h>
@@ -20,7 +21,7 @@ int amd64_syscall_dispatch (void* stack_ptr) {
syscall_handler_func_t func = syscall_find_handler (syscall_num);
if (func == NULL)
return -SR_SYSCALL_NOT_FOUND;
return -ST_SYSCALL_NOT_FOUND;
struct proc* caller = thiscpu->proc_current;

View File

@@ -1,6 +1,7 @@
#include <aux/compiler.h>
#include <libk/std.h>
#include <limine/requests.h>
#include <m/status.h>
#include <m/syscall_defs.h>
#include <mm/pmm.h>
#include <proc/mutex.h>
@@ -19,14 +20,14 @@
/* int proc_quit (void) */
DEFINE_SYSCALL (sys_proc_quit) {
proc_kill (proc, regs);
return SR_OK;
return ST_OK;
}
/* int proc_test (void) */
DEFINE_SYSCALL (sys_proc_test) {
char c = (char)a1;
DEBUG ("test syscall from %d! %c\n", proc->pid, c);
return SR_OK;
return ST_OK;
}
/* int proc_map (uintptr_t paddr, uintptr_t vaddr, size_t pages, uint32_t flags) */
@@ -37,13 +38,13 @@ DEFINE_SYSCALL (sys_proc_map) {
uint32_t flags = (uint32_t)a4;
if (vaddr % PAGE_SIZE != 0)
return -SR_UNALIGNED;
return -ST_UNALIGNED;
if (paddr % PAGE_SIZE != 0)
return -SR_UNALIGNED;
return -ST_UNALIGNED;
bool ok = proc_map (proc, paddr, vaddr, pages, flags);
return ok ? SR_OK : -SR_OOM_ERROR;
return ok ? ST_OK : -ST_OOM_ERROR;
}
/* int proc_unmap (uintptr_t vaddr, size_t pages) */
@@ -52,10 +53,10 @@ DEFINE_SYSCALL (sys_proc_unmap) {
size_t pages = (size_t)a2;
if (vaddr % PAGE_SIZE != 0)
return -SR_UNALIGNED;
return -ST_UNALIGNED;
bool ok = proc_unmap (proc, vaddr, pages);
return ok ? SR_OK : -SR_OOM_ERROR;
return ok ? ST_OK : -ST_OOM_ERROR;
}
/* int proc_create_resource_mem (int rid, size_t pages, int vis, uintptr_t* out_paddr) */
@@ -69,7 +70,7 @@ DEFINE_SYSCALL (sys_proc_create_resource_mem) {
uintptr_t* out_paddr_buf = (uintptr_t*)a4;
if (rid < 0)
return -SR_BAD_RESOURCE;
return -ST_BAD_RESOURCE;
spin_lock (&proc->pd->lock, &ctxprpd);
@@ -77,7 +78,7 @@ DEFINE_SYSCALL (sys_proc_create_resource_mem) {
if (!mm_validate_buffer (proc->pd, (uintptr_t)out_paddr_buf, sizeof (uintptr_t), 0)) {
spin_unlock (&proc->pd->lock, &ctxprpd);
return -SR_BAD_ADDRESS_SPACE;
return -ST_BAD_ADDRESS_SPACE;
}
spin_unlock (&proc->pd->lock, &ctxprpd);
@@ -91,7 +92,7 @@ DEFINE_SYSCALL (sys_proc_create_resource_mem) {
*out_paddr_buf_vaddr = r->u.mem.paddr;
return r->rid;
} else {
return -SR_OOM_ERROR;
return -ST_OOM_ERROR;
}
}
@@ -101,13 +102,13 @@ DEFINE_SYSCALL (sys_proc_create_resource_mutex) {
int vis = (int)a2;
if (rid < 0)
return -SR_BAD_RESOURCE;
return -ST_BAD_RESOURCE;
struct proc_resource* r = proc_create_resource (proc, rid, PR_MUTEX, vis, NULL);
if (r != NULL)
return r->rid;
else
return -SR_OOM_ERROR;
return -ST_OOM_ERROR;
}
/* int proc_mutex_lock (int mutex_rid) */
@@ -122,11 +123,11 @@ DEFINE_SYSCALL (sys_proc_mutex_lock) {
spin_unlock (&proc->lock, &ctxpr);
if (resource == NULL)
return -SR_NOT_FOUND;
return -ST_NOT_FOUND;
proc_mutex_lock (proc, &resource->u.mutex);
return SR_OK;
return ST_OK;
}
DEFINE_SYSCALL (sys_proc_mutex_unlock) {
@@ -140,15 +141,15 @@ DEFINE_SYSCALL (sys_proc_mutex_unlock) {
spin_unlock (&proc->lock, &ctxpr);
if (resource == NULL)
return -SR_NOT_FOUND;
return -ST_NOT_FOUND;
int result = proc_mutex_unlock (proc, &resource->u.mutex) ? SR_OK : -SR_PERMISSION_ERROR;
int result = proc_mutex_unlock (proc, &resource->u.mutex) ? ST_OK : -ST_PERMISSION_ERROR;
if (result < 0)
return result;
proc_sched (regs);
return SR_OK;
return ST_OK;
}
/* int proc_drop_resource (int rid) */
@@ -163,11 +164,11 @@ DEFINE_SYSCALL (sys_proc_drop_resource) {
spin_unlock (&proc->lock, &ctxpr);
if (resource == NULL)
return -SR_NOT_FOUND;
return -ST_NOT_FOUND;
proc_drop_resource (proc, resource);
return SR_OK;
return ST_OK;
}
/* int proc_spawn_thread (uintptr_t vstack_top, size_t stack_size, void* entry) */
@@ -183,7 +184,7 @@ DEFINE_SYSCALL (sys_proc_spawn_thread) {
DEBUG ("new=%p\n", new);
if (new == NULL) {
return -SR_OOM_ERROR;
return -ST_OOM_ERROR;
}
int pid = new->pid;
@@ -196,7 +197,7 @@ DEFINE_SYSCALL (sys_proc_spawn_thread) {
/* int proc_sched (void) */
DEFINE_SYSCALL (sys_proc_sched) {
proc_sched (regs);
return SR_OK;
return ST_OK;
}
static syscall_handler_func_t handler_table[] = {

1
libmsl/alloc/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
*.o

406
libmsl/alloc/liballoc.c Normal file
View File

@@ -0,0 +1,406 @@
/* liballoc breaks when optimized too aggressively, for eg. clang's -Oz */
#pragma clang optimize off
#include <alloc/liballoc.h>
#include <m/proc.h>
static int liballoc_mutex;
static uintptr_t liballoc_map_base = PROC_MAP_BASE;
static int mem_rid_base = 10000;
void liballoc_init (void) { liballoc_mutex = proc_create_resource_mutex (100, RV_PRIVATE); }
int liballoc_lock (void) {
proc_mutex_lock (liballoc_mutex);
return 0;
}
int liballoc_unlock (void) {
proc_mutex_unlock (liballoc_mutex);
return 0;
}
void* liballoc_alloc (int pages) {
uintptr_t current_base = liballoc_map_base;
uintptr_t out_paddr;
int mem_rid = proc_create_resource_mem (mem_rid_base++, pages, RV_PRIVATE, &out_paddr);
if (mem_rid < 0)
return NULL;
proc_map (out_paddr, current_base, pages, PM_PRESENT | PM_RW | PM_USER);
uintptr_t old_base = current_base;
current_base += pages * PAGE_SIZE;
return (void*)old_base;
}
int liballoc_free (void* ptr, int pages) { return 0; }
/** Durand's Ridiculously Amazing Super Duper Memory functions. */
// #define DEBUG
#define LIBALLOC_MAGIC 0xc001c0de
#define MAXCOMPLETE 5
#define MAXEXP 32
#define MINEXP 8
#define MODE_BEST 0
#define MODE_INSTANT 1
#define MODE MODE_BEST
struct boundary_tag* l_freePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks
int l_completePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks
static int l_initialized = 0; //< Flag to indicate initialization.
static int l_pageSize = PAGE_SIZE; //< Individual page size
static int l_pageCount = 16; //< Minimum number of pages to allocate.
// *********** HELPER FUNCTIONS *******************************
/** Returns the exponent required to manage 'size' amount of memory.
*
* Returns n where 2^n <= size < 2^(n+1)
*/
static inline int getexp (unsigned int size) {
if (size < (1 << MINEXP)) {
return -1; // Smaller than the quantum.
}
int shift = MINEXP;
while (shift < MAXEXP) {
if ((1 << shift) > size)
break;
shift += 1;
}
return shift - 1;
}
static void* liballoc_memset (void* s, int c, size_t n) {
size_t i;
for (i = 0; i < n; i++)
((char*)s)[i] = c;
return s;
}
static void* liballoc_memcpy (void* s1, const void* s2, size_t n) {
char* cdest;
char* csrc;
unsigned int* ldest = (unsigned int*)s1;
unsigned int* lsrc = (unsigned int*)s2;
while (n >= sizeof (unsigned int)) {
*ldest++ = *lsrc++;
n -= sizeof (unsigned int);
}
cdest = (char*)ldest;
csrc = (char*)lsrc;
while (n > 0) {
*cdest++ = *csrc++;
n -= 1;
}
return s1;
}
static inline void insert_tag (struct boundary_tag* tag, int index) {
int realIndex;
if (index < 0) {
realIndex = getexp (tag->real_size - sizeof (struct boundary_tag));
if (realIndex < MINEXP)
realIndex = MINEXP;
} else
realIndex = index;
tag->index = realIndex;
if (l_freePages[realIndex] != NULL) {
l_freePages[realIndex]->prev = tag;
tag->next = l_freePages[realIndex];
}
l_freePages[realIndex] = tag;
}
static inline void remove_tag (struct boundary_tag* tag) {
if (l_freePages[tag->index] == tag)
l_freePages[tag->index] = tag->next;
if (tag->prev != NULL)
tag->prev->next = tag->next;
if (tag->next != NULL)
tag->next->prev = tag->prev;
tag->next = NULL;
tag->prev = NULL;
tag->index = -1;
}
static inline struct boundary_tag* melt_left (struct boundary_tag* tag) {
struct boundary_tag* left = tag->split_left;
left->real_size += tag->real_size;
left->split_right = tag->split_right;
if (tag->split_right != NULL)
tag->split_right->split_left = left;
return left;
}
static inline struct boundary_tag* absorb_right (struct boundary_tag* tag) {
struct boundary_tag* right = tag->split_right;
remove_tag (right); // Remove right from free pages.
tag->real_size += right->real_size;
tag->split_right = right->split_right;
if (right->split_right != NULL)
right->split_right->split_left = tag;
return tag;
}
static inline struct boundary_tag* split_tag (struct boundary_tag* tag) {
unsigned int remainder = tag->real_size - sizeof (struct boundary_tag) - tag->size;
struct boundary_tag* new_tag =
(struct boundary_tag*)((uintptr_t)tag + sizeof (struct boundary_tag) + tag->size);
new_tag->magic = LIBALLOC_MAGIC;
new_tag->real_size = remainder;
new_tag->next = NULL;
new_tag->prev = NULL;
new_tag->split_left = tag;
new_tag->split_right = tag->split_right;
if (new_tag->split_right != NULL)
new_tag->split_right->split_left = new_tag;
tag->split_right = new_tag;
tag->real_size -= new_tag->real_size;
insert_tag (new_tag, -1);
return new_tag;
}
// ***************************************************************
static struct boundary_tag* allocate_new_tag (unsigned int size) {
unsigned int pages;
unsigned int usage;
struct boundary_tag* tag;
// This is how much space is required.
usage = size + sizeof (struct boundary_tag);
// Perfect amount of space
pages = usage / l_pageSize;
if ((usage % l_pageSize) != 0)
pages += 1;
// Make sure it's >= the minimum size.
if (pages < (unsigned int)l_pageCount)
pages = l_pageCount;
tag = (struct boundary_tag*)liballoc_alloc (pages);
if (tag == NULL)
return NULL; // uh oh, we ran out of memory.
tag->magic = LIBALLOC_MAGIC;
tag->size = size;
tag->real_size = pages * l_pageSize;
tag->index = -1;
tag->next = NULL;
tag->prev = NULL;
tag->split_left = NULL;
tag->split_right = NULL;
return tag;
}
void* malloc (size_t size) {
int index;
void* ptr;
struct boundary_tag* tag = NULL;
liballoc_lock ();
if (l_initialized == 0) {
for (index = 0; index < MAXEXP; index++) {
l_freePages[index] = NULL;
l_completePages[index] = 0;
}
l_initialized = 1;
}
index = getexp (size) + MODE;
if (index < MINEXP)
index = MINEXP;
// Find one big enough.
tag = l_freePages[index]; // Start at the front of the list.
while (tag != NULL) {
// If there's enough space in this tag.
if ((tag->real_size - sizeof (struct boundary_tag)) >= (size + sizeof (struct boundary_tag))) {
break;
}
tag = tag->next;
}
// No page found. Make one.
if (tag == NULL) {
if ((tag = allocate_new_tag (size)) == NULL) {
liballoc_unlock ();
return NULL;
}
index = getexp (tag->real_size - sizeof (struct boundary_tag));
} else {
remove_tag (tag);
if ((tag->split_left == NULL) && (tag->split_right == NULL))
l_completePages[index] -= 1;
}
// We have a free page. Remove it from the free pages list.
tag->size = size;
// Removed... see if we can re-use the excess space.
unsigned int remainder =
tag->real_size - size - sizeof (struct boundary_tag) * 2; // Support a new tag + remainder
if (((int)(remainder) > 0) /*&& ( (tag->real_size - remainder) >= (1<<MINEXP))*/) {
int childIndex = getexp (remainder);
if (childIndex >= 0) {
struct boundary_tag* new_tag = split_tag (tag);
(void)new_tag;
}
}
ptr = (void*)((uintptr_t)tag + sizeof (struct boundary_tag));
liballoc_unlock ();
return ptr;
}
void free (void* ptr) {
int index;
struct boundary_tag* tag;
if (ptr == NULL)
return;
liballoc_lock ();
tag = (struct boundary_tag*)((uintptr_t)ptr - sizeof (struct boundary_tag));
if (tag->magic != LIBALLOC_MAGIC) {
liballoc_unlock (); // release the lock
return;
}
// MELT LEFT...
while ((tag->split_left != NULL) && (tag->split_left->index >= 0)) {
tag = melt_left (tag);
remove_tag (tag);
}
// MELT RIGHT...
while ((tag->split_right != NULL) && (tag->split_right->index >= 0)) {
tag = absorb_right (tag);
}
// Where is it going back to?
index = getexp (tag->real_size - sizeof (struct boundary_tag));
if (index < MINEXP)
index = MINEXP;
// A whole, empty block?
if ((tag->split_left == NULL) && (tag->split_right == NULL)) {
if (l_completePages[index] == MAXCOMPLETE) {
// Too many standing by to keep. Free this one.
unsigned int pages = tag->real_size / l_pageSize;
if ((tag->real_size % l_pageSize) != 0)
pages += 1;
if (pages < (unsigned int)l_pageCount)
pages = l_pageCount;
liballoc_free (tag, pages);
liballoc_unlock ();
return;
}
l_completePages[index] += 1; // Increase the count of complete pages.
}
// ..........
insert_tag (tag, index);
liballoc_unlock ();
}
void* calloc (size_t nobj, size_t size) {
int real_size;
void* p;
real_size = nobj * size;
p = malloc (real_size);
liballoc_memset (p, 0, real_size);
return p;
}
void* realloc (void* p, size_t size) {
void* ptr;
struct boundary_tag* tag;
int real_size;
if (size == 0) {
free (p);
return NULL;
}
if (p == NULL)
return malloc (size);
if (&liballoc_lock != NULL)
liballoc_lock (); // lockit
tag = (struct boundary_tag*)((uintptr_t)p - sizeof (struct boundary_tag));
real_size = tag->size;
if (&liballoc_unlock != NULL)
liballoc_unlock ();
if ((size_t)real_size > size)
real_size = size;
ptr = malloc (size);
liballoc_memcpy (ptr, p, real_size);
free (p);
return ptr;
}

93
libmsl/alloc/liballoc.h Normal file
View File

@@ -0,0 +1,93 @@
#ifndef _LIBALLOC_H
#define _LIBALLOC_H
#include <stddef.h>
#include <stdint.h>
#define _ALLOC_SKIP_DEFINE
// If we are told to not define our own size_t, then we
// skip the define.
#ifndef _ALLOC_SKIP_DEFINE
#ifndef _HAVE_SIZE_T
#define _HAVE_SIZE_T
typedef unsigned int size_t;
#endif
#ifndef NULL
#define NULL 0
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** This is a boundary tag which is prepended to the
* page or section of a page which we have allocated. It is
* used to identify valid memory blocks that the
* application is trying to free.
*/
struct boundary_tag {
unsigned int magic; //< It's a kind of ...
unsigned int size; //< Requested size.
unsigned int real_size; //< Actual size.
int index; //< Location in the page table.
struct boundary_tag* split_left; //< Linked-list info for broken pages.
struct boundary_tag* split_right; //< The same.
struct boundary_tag* next; //< Linked list info.
struct boundary_tag* prev; //< Linked list info.
};
/** This function is supposed to lock the memory data structures. It
* could be as simple as disabling interrupts or acquiring a spinlock.
* It's up to you to decide.
*
* \return 0 if the lock was acquired successfully. Anything else is
* failure.
*/
extern int liballoc_lock (void);
/** This function unlocks what was previously locked by the liballoc_lock
* function. If it disabled interrupts, it enables interrupts. If it
* had acquiried a spinlock, it releases the spinlock. etc.
*
* \return 0 if the lock was successfully released.
*/
extern int liballoc_unlock (void);
/** This is the hook into the local system which allocates pages. It
* accepts an integer parameter which is the number of pages
* required. The page size was set up in the liballoc_init function.
*
* \return NULL if the pages were not allocated.
* \return A pointer to the allocated memory.
*/
extern void* liballoc_alloc (int);
/** This frees previously allocated memory. The void* parameter passed
* to the function is the exact same value returned from a previous
* liballoc_alloc call.
*
* The integer value is the number of pages to free.
*
* \return 0 if the memory was successfully freed.
*/
extern int liballoc_free (void*, int);
void* malloc (size_t); //< The standard function.
void* realloc (void*, size_t); //< The standard function.
void* calloc (size_t, size_t); //< The standard function.
void free (void*); //< The standard function.
void liballoc_init (void);
#ifdef __cplusplus
}
#endif
#endif

3
libmsl/alloc/src.mk Normal file
View File

@@ -0,0 +1,3 @@
c += alloc/liballoc.c
o += alloc/liballoc.o

View File

@@ -1,3 +1,4 @@
#include <alloc/liballoc.h>
#include <m/proc.h>
#include <stdint.h>
@@ -15,6 +16,7 @@ static void clear_bss (void) {
void __premain (void) {
clear_bss ();
liballoc_init ();
app_main ();

View File

@@ -27,5 +27,6 @@ int proc_mutex_lock (int mutex_rid);
int proc_mutex_unlock (int mutex_rid);
int proc_spawn_thread (uintptr_t vstack_top, size_t stack_size, void* entry);
int proc_sched (void);
int proc_translate_resource_mem (uintptr_t vaddr);
#endif // _LIBMSL_M_PROC_H

View File

@@ -2,3 +2,4 @@ include $(platform)/src.mk
include init/src.mk
include m/src.mk
include string/src.mk
include alloc/src.mk