Use clang-format

This commit is contained in:
2025-12-21 22:53:25 +01:00
parent 8794a61073
commit b2d8294b12
36 changed files with 925 additions and 842 deletions

37
.editorconfig Normal file
View File

@@ -0,0 +1,37 @@
root = true
# Default for all files
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
# C / header files
[*.{c,h}]
indent_style = space
indent_size = 2
tab_width = 2
max_line_length = 80
# Assembly (if present; usually tab-sensitive)
[*.S]
indent_style = tab
tab_width = 8
trim_trailing_whitespace = false
# Makefiles (MUST use tabs)
[Makefile]
indent_style = tab
tab_width = 8
trim_trailing_whitespace = false
[*.mk]
indent_style = tab
tab_width = 8
trim_trailing_whitespace = false
# Markdown (avoid wrapping conflicts)
[*.md]
trim_trailing_whitespace = false
max_line_length = off

View File

@@ -6,4 +6,7 @@ all_kernel:
clean_kernel: clean_kernel:
make -C kernel platform=$(platform) clean make -C kernel platform=$(platform) clean
.PHONY: all_kernel clean_kernel format_kernel:
make -C kernel platform=$(platform) format
.PHONY: all_kernel clean_kernel format_kernel

57
kernel/.clang-format Normal file
View File

@@ -0,0 +1,57 @@
BasedOnStyle: LLVM
Language: C
# Indentation
IndentWidth: 2
TabWidth: 2
UseTab: Never
# Braces and blocks
BreakBeforeBraces: Attach
BraceWrapping:
AfterFunction: false
AfterControlStatement: false
AfterStruct: false
AfterEnum: false
AfterUnion: false
BeforeElse: false
# Control statements
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AllowShortBlocksOnASingleLine: Never
# Line breaking
ColumnLimit: 80
BreakBeforeBinaryOperators: None
BreakBeforeTernaryOperators: true
BreakStringLiterals: false
# Spacing
SpaceBeforeParens: Always
SpaceBeforeAssignmentOperators: true
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
# Pointer alignment
PointerAlignment: Left
DerivePointerAlignment: false
# Alignment
AlignAfterOpenBracket: DontAlign
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignOperands: false
# Includes
SortIncludes: true
# Comments
ReflowComments: false
CommentPragmas: '^ IWYU pragma:'
# Misc
KeepEmptyLinesAtTheStartOfBlocks: false
MaxEmptyLinesToKeep: 1

View File

@@ -23,4 +23,13 @@ build/kernel.elf: $(o)
clean: clean:
rm -f $(o) build/kernel.elf rm -f $(o) build/kernel.elf
.PHONY: all clean format:
clang-format -i $$(git ls-files '*.c' '*.h' \
':!limine/limine.h' \
':!c_headers/include/**' \
':!uACPI/source/**' \
':!uACPI/include/**' \
':!uACPI/tests/**' \
':!libk/printf*')
.PHONY: all clean format

View File

@@ -1,23 +1,26 @@
#include <limine/limine.h>
#include <amd64/init.h> #include <amd64/init.h>
#include <sys/debug.h> #include <limine/limine.h>
#include <mm/pmm.h>
#include <mm/liballoc.h> #include <mm/liballoc.h>
#include <mm/pmm.h>
#include <sys/debug.h>
#include <uacpi/uacpi.h> #include <uacpi/uacpi.h>
#define UACPI_MEMORY_BUFFER_MAX 4096 #define UACPI_MEMORY_BUFFER_MAX 4096
__attribute__((aligned(16))) static uint8_t uacpi_memory_buffer[UACPI_MEMORY_BUFFER_MAX]; __attribute__ ((
aligned (16))) static uint8_t uacpi_memory_buffer[UACPI_MEMORY_BUFFER_MAX];
void bootmain(void) { void bootmain (void) {
amd64_init(); amd64_init ();
pmm_init(); pmm_init ();
uacpi_setup_early_table_access((void *)uacpi_memory_buffer, sizeof(uacpi_memory_buffer)); uacpi_setup_early_table_access (
(void*)uacpi_memory_buffer, sizeof (uacpi_memory_buffer));
int *a = malloc(sizeof(int)); int* a = malloc (sizeof (int));
*a = 6969; *a = 6969;
DEBUG("a=%p, *a=%d\n", a, *a); DEBUG ("a=%p, *a=%d\n", a, *a);
for (;;); for (;;)
;
} }

View File

@@ -1,46 +1,47 @@
#include <libk/std.h>
#include <libk/string.h>
#include <libk/printf.h>
#include <sys/debug.h>
#include <amd64/debug.h> #include <amd64/debug.h>
#include <amd64/io.h> #include <amd64/io.h>
#include <libk/printf.h>
#include <libk/std.h>
#include <libk/string.h>
#include <sys/debug.h>
#define PORT_COM1 0x03F8 #define PORT_COM1 0x03F8
#define BUFFER_SIZE 1024 #define BUFFER_SIZE 1024
static bool amd64_debug_serial_tx_empty(void) { static bool amd64_debug_serial_tx_empty (void) {
return (bool)(amd64_io_inb(PORT_COM1 + 5) & 0x20); return (bool)(amd64_io_inb (PORT_COM1 + 5) & 0x20);
} }
static void amd64_debug_serial_write(char x) { static void amd64_debug_serial_write (char x) {
while (!amd64_debug_serial_tx_empty()); while (!amd64_debug_serial_tx_empty ())
amd64_io_outb(PORT_COM1, (uint8_t)x); ;
amd64_io_outb (PORT_COM1, (uint8_t)x);
} }
void debugprintf(const char *fmt, ...) { void debugprintf (const char* fmt, ...) {
char buffer[BUFFER_SIZE]; char buffer[BUFFER_SIZE];
memset(buffer, 0, sizeof(buffer)); memset (buffer, 0, sizeof (buffer));
va_list ap; va_list ap;
va_start(ap, fmt); va_start (ap, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, ap); vsnprintf (buffer, sizeof (buffer), fmt, ap);
va_end(ap); va_end (ap);
buffer[sizeof(buffer) - 1] = '\0'; buffer[sizeof (buffer) - 1] = '\0';
const char *p = buffer; const char* p = buffer;
while (*p) { while (*p) {
amd64_debug_serial_write(*p); amd64_debug_serial_write (*p);
p++; p++;
} }
} }
void amd64_debug_init(void) { void amd64_debug_init (void) {
amd64_io_outb(PORT_COM1 + 1, 0x00); amd64_io_outb (PORT_COM1 + 1, 0x00);
amd64_io_outb(PORT_COM1 + 3, 0x80); amd64_io_outb (PORT_COM1 + 3, 0x80);
amd64_io_outb(PORT_COM1 + 0, 0x03); amd64_io_outb (PORT_COM1 + 0, 0x03);
amd64_io_outb(PORT_COM1 + 1, 0x00); amd64_io_outb (PORT_COM1 + 1, 0x00);
amd64_io_outb(PORT_COM1 + 3, 0x03); amd64_io_outb (PORT_COM1 + 3, 0x03);
amd64_io_outb(PORT_COM1 + 2, 0xC7); amd64_io_outb (PORT_COM1 + 2, 0xC7);
amd64_io_outb(PORT_COM1 + 4, 0x0B); amd64_io_outb (PORT_COM1 + 4, 0x0B);
} }

View File

@@ -1,6 +1,6 @@
#ifndef _KERNEL_AMD64_DEBUG_H #ifndef _KERNEL_AMD64_DEBUG_H
#define _KERNEL_AMD64_DEBUG_H #define _KERNEL_AMD64_DEBUG_H
void amd64_debug_init(void); void amd64_debug_init (void);
#endif // _KERNEL_AMD64_DEBUG_H #endif // _KERNEL_AMD64_DEBUG_H

View File

@@ -1,9 +1,9 @@
#include <amd64/debug.h>
#include <amd64/init.h>
#include <amd64/intr.h>
#include <amd64/tss.h>
#include <libk/std.h> #include <libk/std.h>
#include <libk/string.h> #include <libk/string.h>
#include <amd64/init.h>
#include <amd64/tss.h>
#include <amd64/debug.h>
#include <amd64/intr.h>
#define GDT_KCODE 0x08 #define GDT_KCODE 0x08
#define GDT_KDATA 0x10 #define GDT_KDATA 0x10
@@ -14,7 +14,7 @@
#define TSS 0x80 #define TSS 0x80
#define TSS_PRESENT 0x89 #define TSS_PRESENT 0x89
#define KSTACK_SIZE (8*1024) #define KSTACK_SIZE (8 * 1024)
struct gdt_entry { struct gdt_entry {
uint16_t limitlow; uint16_t limitlow;
@@ -23,23 +23,25 @@ struct gdt_entry {
uint8_t access; uint8_t access;
uint8_t gran; uint8_t gran;
uint8_t basehigh; uint8_t basehigh;
} __attribute__((packed)); } __attribute__ ((packed));
struct gdt_ptr { struct gdt_ptr {
uint16_t limit; uint16_t limit;
uint64_t base; uint64_t base;
} __attribute__((packed)); } __attribute__ ((packed));
struct gdt_extended { struct gdt_extended {
struct gdt_entry old[5]; struct gdt_entry old[5];
struct gdt_entry tsslow; struct gdt_entry tsslow;
struct gdt_entry tsshigh; struct gdt_entry tsshigh;
} __attribute__((packed)); } __attribute__ ((packed));
__attribute__((aligned(16))) static volatile uint8_t kernel_stack[KSTACK_SIZE]; /* clang-format off */
__attribute__((aligned(16))) static volatile struct gdt_extended gdt; __attribute__ ((aligned (16))) static volatile uint8_t kernel_stack[KSTACK_SIZE];
__attribute__ ((aligned (16))) static volatile struct gdt_extended gdt;
/* clang-format on */
static void amd64_gdt_set(volatile struct gdt_entry *ent, uint32_t base, static void amd64_gdt_set (volatile struct gdt_entry* ent, uint32_t base,
uint32_t limit, uint8_t acc, uint8_t gran) { uint32_t limit, uint8_t acc, uint8_t gran) {
ent->baselow = (base & 0xFFFF); ent->baselow = (base & 0xFFFF);
ent->basemid = (base >> 16) & 0xFF; ent->basemid = (base >> 16) & 0xFF;
@@ -49,25 +51,26 @@ static void amd64_gdt_set(volatile struct gdt_entry *ent, uint32_t base,
ent->access = acc; ent->access = acc;
} }
static void amd64_gdt_init(void) { static void amd64_gdt_init (void) {
volatile struct tss *tss = amd64_get_tss(); volatile struct tss* tss = amd64_get_tss ();
memset((void *)&gdt, 0, sizeof(gdt)); memset ((void*)&gdt, 0, sizeof (gdt));
memset((void *)kernel_stack, 0, sizeof(kernel_stack)); memset ((void*)kernel_stack, 0, sizeof (kernel_stack));
memset((void *)tss, 0, sizeof(*tss)); memset ((void*)tss, 0, sizeof (*tss));
tss->iopb_off = sizeof(*tss); tss->iopb_off = sizeof (*tss);
tss->rsp0 = (uint64_t)((uintptr_t)kernel_stack + sizeof(kernel_stack)); tss->rsp0 = (uint64_t)((uintptr_t)kernel_stack + sizeof (kernel_stack));
uint64_t tssbase = (uint64_t)&tss; uint64_t tssbase = (uint64_t)&tss;
uint64_t tsslimit = sizeof(*tss) - 1; uint64_t tsslimit = sizeof (*tss) - 1;
amd64_gdt_set(&gdt.old[0], 0, 0, 0, 0); amd64_gdt_set (&gdt.old[0], 0, 0, 0, 0);
amd64_gdt_set(&gdt.old[1], 0, 0xFFFFF, 0x9A, 0xA0); amd64_gdt_set (&gdt.old[1], 0, 0xFFFFF, 0x9A, 0xA0);
amd64_gdt_set(&gdt.old[2], 0, 0xFFFFF, 0x92, 0xC0); amd64_gdt_set (&gdt.old[2], 0, 0xFFFFF, 0x92, 0xC0);
amd64_gdt_set(&gdt.old[3], 0, 0xFFFFF, 0xFA, 0xA0); amd64_gdt_set (&gdt.old[3], 0, 0xFFFFF, 0xFA, 0xA0);
amd64_gdt_set(&gdt.old[4], 0, 0xFFFFF, 0xF2, 0xC0); amd64_gdt_set (&gdt.old[4], 0, 0xFFFFF, 0xF2, 0xC0);
amd64_gdt_set(&gdt.tsslow, (tssbase & 0xFFFFFFFF), tsslimit, TSS_PRESENT | TSS, 0); amd64_gdt_set (
&gdt.tsslow, (tssbase & 0xFFFFFFFF), tsslimit, TSS_PRESENT | TSS, 0);
uint32_t tssbasehigh = (tssbase >> 32); uint32_t tssbasehigh = (tssbase >> 32);
gdt.tsshigh.limitlow = (tssbasehigh & 0xFFFF); gdt.tsshigh.limitlow = (tssbasehigh & 0xFFFF);
@@ -78,12 +81,11 @@ static void amd64_gdt_init(void) {
gdt.tsshigh.gran = 0; gdt.tsshigh.gran = 0;
struct gdt_ptr gdtr; struct gdt_ptr gdtr;
gdtr.limit = sizeof(gdt) - 1; gdtr.limit = sizeof (gdt) - 1;
gdtr.base = (uint64_t)&gdt; gdtr.base = (uint64_t)&gdt;
__asm__ volatile("lgdt %0" :: "m"(gdtr) : "memory"); __asm__ volatile ("lgdt %0" ::"m"(gdtr) : "memory");
__asm__ volatile( __asm__ volatile ("pushq %[kcode]\n"
"pushq %[kcode]\n"
"lea 1f(%%rip), %%rax\n" "lea 1f(%%rip), %%rax\n"
"pushq %%rax\n" "pushq %%rax\n"
"lretq\n" "lretq\n"
@@ -94,14 +96,13 @@ static void amd64_gdt_init(void) {
"movw %%ax, %%ss\n" "movw %%ax, %%ss\n"
: :
: [kcode] "i"(GDT_KCODE), [kdata] "i"(GDT_KDATA) : [kcode] "i"(GDT_KCODE), [kdata] "i"(GDT_KDATA)
: "rax", "memory" : "rax", "memory");
);
__asm__ volatile("ltr %0" :: "r"((uint16_t)GDT_TSS)); __asm__ volatile ("ltr %0" ::"r"((uint16_t)GDT_TSS));
} }
void amd64_init(void) { void amd64_init (void) {
amd64_gdt_init(); amd64_gdt_init ();
amd64_debug_init(); amd64_debug_init ();
amd64_intr_init(); amd64_intr_init ();
} }

View File

@@ -1,6 +1,6 @@
#ifndef _KERNEL_AMD64_INIT_H #ifndef _KERNEL_AMD64_INIT_H
#define _KERNEL_AMD64_INIT_H #define _KERNEL_AMD64_INIT_H
void amd64_init(void); void amd64_init (void);
#endif // _KERNEL_AMD64_INIT_H #endif // _KERNEL_AMD64_INIT_H

View File

@@ -1,8 +1,8 @@
#include <amd64/intr.h>
#include <amd64/io.h>
#include <libk/std.h> #include <libk/std.h>
#include <libk/string.h> #include <libk/string.h>
#include <sys/debug.h> #include <sys/debug.h>
#include <amd64/intr.h>
#include <amd64/io.h>
/* 8259 PIC defs. */ /* 8259 PIC defs. */
#define PIC1 0x20 #define PIC1 0x20
@@ -39,42 +39,46 @@ struct idt_entry {
uint16_t intrmid; uint16_t intrmid;
uint32_t intrhigh; uint32_t intrhigh;
uint32_t resv; uint32_t resv;
} __attribute__((packed)); } __attribute__ ((packed));
struct idt { struct idt {
uint16_t limit; uint16_t limit;
uint64_t base; uint64_t base;
} __attribute__((packed)); } __attribute__ ((packed));
__attribute__((aligned(16))) static volatile struct idt_entry idt_entries[IDT_ENTRIES_MAX]; __attribute__ ((aligned (
16))) static volatile struct idt_entry idt_entries[IDT_ENTRIES_MAX];
static volatile struct idt idt; static volatile struct idt idt;
extern void amd64_spin(void); extern void amd64_spin (void);
/* Remaps and disables old 8259 PIC, since we'll be using APIC. */ /* Remaps and disables old 8259 PIC, since we'll be using APIC. */
static void amd64_init_pic(void) { static void amd64_init_pic (void) {
#define IO_OP(fn, ...) fn(__VA_ARGS__); amd64_io_wait() #define IO_OP(fn, ...) \
fn (__VA_ARGS__); \
amd64_io_wait ()
IO_OP(amd64_io_outb, PIC1_CMD, (ICW1_INIT | ICW1_ICW4)); IO_OP (amd64_io_outb, PIC1_CMD, (ICW1_INIT | ICW1_ICW4));
IO_OP(amd64_io_outb, PIC2_CMD, (ICW1_INIT | ICW1_ICW4)); IO_OP (amd64_io_outb, PIC2_CMD, (ICW1_INIT | ICW1_ICW4));
IO_OP(amd64_io_outb, PIC1_DATA, 0x20); IO_OP (amd64_io_outb, PIC1_DATA, 0x20);
IO_OP(amd64_io_outb, PIC2_DATA, 0x28); IO_OP (amd64_io_outb, PIC2_DATA, 0x28);
IO_OP(amd64_io_outb, PIC1_DATA, (1 << CASCADE_IRQ)); IO_OP (amd64_io_outb, PIC1_DATA, (1 << CASCADE_IRQ));
IO_OP(amd64_io_outb, PIC2_DATA, 2); IO_OP (amd64_io_outb, PIC2_DATA, 2);
IO_OP(amd64_io_outb, PIC1_DATA, ICW4_8086); IO_OP (amd64_io_outb, PIC1_DATA, ICW4_8086);
IO_OP(amd64_io_outb, PIC2_DATA, ICW4_8086); IO_OP (amd64_io_outb, PIC2_DATA, ICW4_8086);
/* Disable */ /* Disable */
IO_OP(amd64_io_outb, PIC1_DATA, 0xFF); IO_OP (amd64_io_outb, PIC1_DATA, 0xFF);
IO_OP(amd64_io_outb, PIC2_DATA, 0xFF); IO_OP (amd64_io_outb, PIC2_DATA, 0xFF);
#undef IO_OP #undef IO_OP
} }
static void amd64_idt_set(volatile struct idt_entry *ent, uint64_t handler, uint8_t flags) { static void amd64_idt_set (
volatile struct idt_entry* ent, uint64_t handler, uint8_t flags) {
ent->intrlow = (handler & 0xFFFF); ent->intrlow = (handler & 0xFFFF);
ent->kernel_cs = 0x08; // GDT_KCODE (init.c) ent->kernel_cs = 0x08; // GDT_KCODE (init.c)
ent->ist = 0; ent->ist = 0;
@@ -84,43 +88,78 @@ static void amd64_idt_set(volatile struct idt_entry *ent, uint64_t handler, uint
ent->resv = 0; ent->resv = 0;
} }
static void amd64_idt_init(void) { static void amd64_idt_init (void) {
memset((void *)idt_entries, 0, sizeof(idt_entries)); memset ((void*)idt_entries, 0, sizeof (idt_entries));
#define IDT_ENTRY(n) \ #define IDT_ENTRY(n) \
extern void amd64_intr ## n(void); \ extern void amd64_intr##n (void); \
amd64_idt_set(&idt_entries[(n)], (uint64_t)&amd64_intr ## n, 0x8E) amd64_idt_set (&idt_entries[(n)], (uint64_t)&amd64_intr##n, 0x8E)
IDT_ENTRY(0); IDT_ENTRY(1); IDT_ENTRY(2); IDT_ENTRY(3); IDT_ENTRY (0);
IDT_ENTRY(4); IDT_ENTRY(5); IDT_ENTRY(6); IDT_ENTRY(7); IDT_ENTRY (1);
IDT_ENTRY(8); IDT_ENTRY(9); IDT_ENTRY(10); IDT_ENTRY(11); IDT_ENTRY (2);
IDT_ENTRY(12); IDT_ENTRY(13); IDT_ENTRY(14); IDT_ENTRY(15); IDT_ENTRY (3);
IDT_ENTRY(16); IDT_ENTRY(17); IDT_ENTRY(18); IDT_ENTRY(19); IDT_ENTRY (4);
IDT_ENTRY(20); IDT_ENTRY(21); IDT_ENTRY(22); IDT_ENTRY(23); IDT_ENTRY (5);
IDT_ENTRY(24); IDT_ENTRY(25); IDT_ENTRY(26); IDT_ENTRY(27); IDT_ENTRY (6);
IDT_ENTRY(28); IDT_ENTRY(29); IDT_ENTRY(30); IDT_ENTRY(31); IDT_ENTRY (7);
IDT_ENTRY(32); IDT_ENTRY(33); IDT_ENTRY(34); IDT_ENTRY(35); IDT_ENTRY (8);
IDT_ENTRY(36); IDT_ENTRY(37); IDT_ENTRY(38); IDT_ENTRY(39); IDT_ENTRY (9);
IDT_ENTRY(40); IDT_ENTRY(41); IDT_ENTRY(42); IDT_ENTRY(43); IDT_ENTRY (10);
IDT_ENTRY(44); IDT_ENTRY(45); IDT_ENTRY(46); IDT_ENTRY(47); IDT_ENTRY (11);
IDT_ENTRY (12);
IDT_ENTRY (13);
IDT_ENTRY (14);
IDT_ENTRY (15);
IDT_ENTRY (16);
IDT_ENTRY (17);
IDT_ENTRY (18);
IDT_ENTRY (19);
IDT_ENTRY (20);
IDT_ENTRY (21);
IDT_ENTRY (22);
IDT_ENTRY (23);
IDT_ENTRY (24);
IDT_ENTRY (25);
IDT_ENTRY (26);
IDT_ENTRY (27);
IDT_ENTRY (28);
IDT_ENTRY (29);
IDT_ENTRY (30);
IDT_ENTRY (31);
IDT_ENTRY (32);
IDT_ENTRY (33);
IDT_ENTRY (34);
IDT_ENTRY (35);
IDT_ENTRY (36);
IDT_ENTRY (37);
IDT_ENTRY (38);
IDT_ENTRY (39);
IDT_ENTRY (40);
IDT_ENTRY (41);
IDT_ENTRY (42);
IDT_ENTRY (43);
IDT_ENTRY (44);
IDT_ENTRY (45);
IDT_ENTRY (46);
IDT_ENTRY (47);
#undef IDT_ENTRY #undef IDT_ENTRY
idt.limit = sizeof(idt_entries) - 1; idt.limit = sizeof (idt_entries) - 1;
idt.base = (uint64_t)idt_entries; idt.base = (uint64_t)idt_entries;
__asm__ volatile("lidt %0" :: "m"(idt)); __asm__ volatile ("lidt %0" ::"m"(idt));
__asm__ volatile("sti"); __asm__ volatile ("sti");
} }
static void amd64_intr_exception(struct saved_regs *regs) { static void amd64_intr_exception (struct saved_regs* regs) {
DEBUG("cpu exception %lu (%lu)\n", regs->trap, regs->error); DEBUG ("cpu exception %lu (%lu)\n", regs->trap, regs->error);
uint64_t cr2; uint64_t cr2;
__asm__ volatile("movq %%cr2, %0" : "=r"(cr2)); __asm__ volatile ("movq %%cr2, %0" : "=r"(cr2));
uint64_t cr3; uint64_t cr3;
__asm__ volatile("movq %%cr3, %0" : "=r"(cr3)); __asm__ volatile ("movq %%cr3, %0" : "=r"(cr3));
debugprintf( debugprintf ("r15=%016lx r14=%016lx r13=%016lx\n"
"r15=%016lx r14=%016lx r13=%016lx\n"
"r12=%016lx r11=%016lx r10=%016lx\n" "r12=%016lx r11=%016lx r10=%016lx\n"
"r9 =%016lx r8 =%016lx rbp=%016lx\n" "r9 =%016lx r8 =%016lx rbp=%016lx\n"
"rdi=%016lx rsi=%016lx rdx=%016lx\n" "rdi=%016lx rsi=%016lx rdx=%016lx\n"
@@ -128,30 +167,25 @@ static void amd64_intr_exception(struct saved_regs *regs) {
"err=%016lx rip=%016lx cs =%016lx\n" "err=%016lx rip=%016lx cs =%016lx\n"
"rfl=%016lx rsp=%016lx ss =%016lx\n" "rfl=%016lx rsp=%016lx ss =%016lx\n"
"cr2=%016lx cr3=%016lx rbx=%016lx\n", "cr2=%016lx cr3=%016lx rbx=%016lx\n",
regs->r15, regs->r14, regs->r13, regs->r15, regs->r14, regs->r13, regs->r12, regs->r11, regs->r10,
regs->r12, regs->r11, regs->r10, regs->r9, regs->r8, regs->rbp, regs->rdi, regs->rsi, regs->rdx, regs->rcx,
regs->r9, regs->r8, regs->rbp, regs->rax, regs->trap, regs->error, regs->rip, regs->cs, regs->rflags,
regs->rdi, regs->rsi, regs->rdx, regs->rsp, regs->ss, cr2, cr3, regs->rbx);
regs->rcx, regs->rax, regs->trap,
regs->error, regs->rip, regs->cs,
regs->rflags, regs->rsp, regs->ss,
cr2, cr3, regs->rbx
);
amd64_spin(); amd64_spin ();
} }
void amd64_intr_handler(void *stack_ptr) { void amd64_intr_handler (void* stack_ptr) {
struct saved_regs *regs = stack_ptr; struct saved_regs* regs = stack_ptr;
if (regs->trap <= 31) { if (regs->trap <= 31) {
amd64_intr_exception(regs); amd64_intr_exception (regs);
} else { } else {
DEBUG("unknown trap %lu\n", regs->trap); DEBUG ("unknown trap %lu\n", regs->trap);
} }
} }
void amd64_intr_init(void) { void amd64_intr_init (void) {
amd64_init_pic(); amd64_init_pic ();
amd64_idt_init(); amd64_idt_init ();
} }

View File

@@ -28,8 +28,8 @@ struct saved_regs {
uint64_t rflags; uint64_t rflags;
uint64_t rsp; uint64_t rsp;
uint64_t ss; uint64_t ss;
} __attribute__((packed)); } __attribute__ ((packed));
void amd64_intr_init(void); void amd64_intr_init (void);
#endif // _KERNEL_AMD64_INTR_H #endif // _KERNEL_AMD64_INTR_H

View File

@@ -1,54 +1,48 @@
#include <libk/std.h>
#include <amd64/io.h> #include <amd64/io.h>
#include <libk/std.h>
void amd64_io_outb(uint16_t port, uint8_t v) { void amd64_io_outb (uint16_t port, uint8_t v) {
__asm__ volatile("outb %1, %0" :: "dN"(port), "a"(v)); __asm__ volatile ("outb %1, %0" ::"dN"(port), "a"(v));
} }
void amd64_io_outw(uint16_t port, uint16_t v) { void amd64_io_outw (uint16_t port, uint16_t v) {
__asm__ volatile("outw %%ax, %%dx" :: "a"(v), "d"(port)); __asm__ volatile ("outw %%ax, %%dx" ::"a"(v), "d"(port));
} }
void amd64_io_outl(uint16_t port, uint32_t v) { void amd64_io_outl (uint16_t port, uint32_t v) {
__asm__ volatile("outl %%eax, %%dx" :: "d"(port), "a"(v)); __asm__ volatile ("outl %%eax, %%dx" ::"d"(port), "a"(v));
} }
void amd64_io_outsw(uint16_t port, const void *addr, int cnt) { void amd64_io_outsw (uint16_t port, const void* addr, int cnt) {
__asm__ volatile( __asm__ volatile ("cld; rep outsw"
"cld; rep outsw"
: "+S"(addr), "+c"(cnt) : "+S"(addr), "+c"(cnt)
: "d"(port) : "d"(port)
: "memory", "cc" : "memory", "cc");
);
} }
uint8_t amd64_io_inb(uint16_t port) { uint8_t amd64_io_inb (uint16_t port) {
uint8_t r; uint8_t r;
__asm__ volatile("inb %1, %0" : "=a"(r) : "dN"(port)); __asm__ volatile ("inb %1, %0" : "=a"(r) : "dN"(port));
return r; return r;
} }
uint16_t amd64_io_inw(uint16_t port) { uint16_t amd64_io_inw (uint16_t port) {
uint16_t r; uint16_t r;
__asm__ volatile("inw %%dx, %%ax" : "=a"(r) : "d"(port)); __asm__ volatile ("inw %%dx, %%ax" : "=a"(r) : "d"(port));
return r; return r;
} }
uint32_t amd64_io_inl(uint16_t port) { uint32_t amd64_io_inl (uint16_t port) {
uint32_t r; uint32_t r;
__asm__ volatile("inl %%dx, %%eax" : "=a"(r) : "d"(port)); __asm__ volatile ("inl %%dx, %%eax" : "=a"(r) : "d"(port));
return r; return r;
} }
void amd64_io_insw(uint16_t port, void *addr, int cnt) { void amd64_io_insw (uint16_t port, void* addr, int cnt) {
__asm__ volatile( __asm__ volatile ("cld; rep insw"
"cld; rep insw"
: "+D"(addr), "+c"(cnt) : "+D"(addr), "+c"(cnt)
: "d"(port) : "d"(port)
: "memory", "cc" : "memory", "cc");
);
} }
void amd64_io_wait(void) { void amd64_io_wait (void) { amd64_io_outb (0x80, 0); }
amd64_io_outb(0x80, 0);
}

View File

@@ -3,14 +3,14 @@
#include <libk/std.h> #include <libk/std.h>
void amd64_io_outb(uint16_t port, uint8_t v); void amd64_io_outb (uint16_t port, uint8_t v);
void amd64_io_outw(uint16_t port, uint16_t v); void amd64_io_outw (uint16_t port, uint16_t v);
void amd64_io_outl(uint16_t port, uint32_t v); void amd64_io_outl (uint16_t port, uint32_t v);
void amd64_io_outsw(uint16_t port, const void *addr, int cnt); void amd64_io_outsw (uint16_t port, const void* addr, int cnt);
uint8_t amd64_io_inb(uint16_t port); uint8_t amd64_io_inb (uint16_t port);
uint16_t amd64_io_inw(uint16_t port); uint16_t amd64_io_inw (uint16_t port);
uint32_t amd64_io_inl(uint16_t port); uint32_t amd64_io_inl (uint16_t port);
void amd64_io_insw(uint16_t port, void *addr, int cnt); void amd64_io_insw (uint16_t port, void* addr, int cnt);
void amd64_io_wait(void); void amd64_io_wait (void);
#endif // _KERNEL_AMD64_IO_H #endif // _KERNEL_AMD64_IO_H

View File

@@ -1,5 +1,3 @@
#include <sys/spin_lock.h> #include <sys/spin_lock.h>
void spin_lock_relax(void) { void spin_lock_relax (void) { __asm__ volatile ("pause"); }
__asm__ volatile("pause");
}

View File

@@ -1,8 +1,6 @@
#include <libk/std.h>
#include <amd64/tss.h> #include <amd64/tss.h>
#include <libk/std.h>
__attribute__((aligned(16))) static volatile struct tss tss; __attribute__ ((aligned (16))) static volatile struct tss tss;
volatile struct tss *amd64_get_tss(void) { volatile struct tss* amd64_get_tss (void) { return &tss; }
return &tss;
}

View File

@@ -13,8 +13,8 @@ struct tss {
uint64_t resv2; uint64_t resv2;
uint16_t resv3; uint16_t resv3;
uint16_t iopb_off; uint16_t iopb_off;
} __attribute__((packed)); } __attribute__ ((packed));
volatile struct tss *amd64_get_tss(void); volatile struct tss* amd64_get_tss (void);
#endif // _KERNEL_AMD64_TSS_H #endif // _KERNEL_AMD64_TSS_H

View File

@@ -1,61 +1,61 @@
#include <libk/std.h>
#include <libk/bm.h> #include <libk/bm.h>
#include <libk/std.h>
#include <libk/string.h> #include <libk/string.h>
void bm_init(struct bm *bm, uint8_t *base, size_t nbits) { void bm_init (struct bm* bm, uint8_t* base, size_t nbits) {
bm->base = base; bm->base = base;
bm->nbits = nbits; bm->nbits = nbits;
memset(bm->base, 0, (nbits + 7) / 8); memset (bm->base, 0, (nbits + 7) / 8);
} }
/* /*
* Set a bit in a bitmap. * Set a bit in a bitmap.
*/ */
void bm_set(struct bm *bm, size_t k) { void bm_set (struct bm* bm, size_t k) {
if (k >= bm->nbits) if (k >= bm->nbits)
return; return;
uint8_t *b = (uint8_t *)((uintptr_t)bm->base + (k / 8)); uint8_t* b = (uint8_t*)((uintptr_t)bm->base + (k / 8));
*b = ((*b) | (1 << (k % 8))); *b = ((*b) | (1 << (k % 8)));
} }
/* /*
* Clear a bit in a bitmap. * Clear a bit in a bitmap.
*/ */
void bm_clear(struct bm *bm, size_t k) { void bm_clear (struct bm* bm, size_t k) {
if (k >= bm->nbits) if (k >= bm->nbits)
return; return;
uint8_t *b = (uint8_t *)((uintptr_t)bm->base + (k / 8)); uint8_t* b = (uint8_t*)((uintptr_t)bm->base + (k / 8));
*b = ((*b) & ~(1 << (k % 8))); *b = ((*b) & ~(1 << (k % 8)));
} }
/* /*
* Test (true/false) a bit in a bitmap. * Test (true/false) a bit in a bitmap.
*/ */
bool bm_test(struct bm *bm, size_t k) { bool bm_test (struct bm* bm, size_t k) {
if (k >= bm->nbits) if (k >= bm->nbits)
return false; return false;
uint8_t *b = (uint8_t *)((uintptr_t)bm->base + (k / 8)); uint8_t* b = (uint8_t*)((uintptr_t)bm->base + (k / 8));
return (*b) & (1 << (k % 8)); return (*b) & (1 << (k % 8));
} }
/* /*
* Set a range of bits in a bitmap. if starting bit is out of range, we fail. * Set a range of bits in a bitmap. if starting bit is out of range, we fail.
*/ */
bool bm_set_region(struct bm *bm, size_t k, size_t m) { bool bm_set_region (struct bm* bm, size_t k, size_t m) {
if ((k >= m) || (k >= bm->nbits) || (k + m >= bm->nbits)) if ((k >= m) || (k >= bm->nbits) || (k + m >= bm->nbits))
return false; return false;
for (size_t i = k; i < m; i++) { for (size_t i = k; i < m; i++) {
bool taken = bm_test(bm, i); bool taken = bm_test (bm, i);
if (taken) if (taken)
return false; return false;
} }
for (size_t i = k; i < m; i++) for (size_t i = k; i < m; i++)
bm_set(bm, i); bm_set (bm, i);
return true; return true;
} }
@@ -63,12 +63,12 @@ bool bm_set_region(struct bm *bm, size_t k, size_t m) {
/* /*
* Clear a range of bits in a bitmap. starting bit must be in range. * Clear a range of bits in a bitmap. starting bit must be in range.
*/ */
void bm_clear_region(struct bm *bm, size_t k, size_t m) { void bm_clear_region (struct bm* bm, size_t k, size_t m) {
if ((k >= m) || (k >= bm->nbits) || (k + m >= bm->nbits)) if ((k >= m) || (k >= bm->nbits) || (k + m >= bm->nbits))
return; return;
for (size_t i = k; i < m; i++) for (size_t i = k; i < m; i++)
bm_clear(bm, i); bm_clear (bm, i);
} }
/* /*
@@ -77,12 +77,12 @@ void bm_clear_region(struct bm *bm, size_t k, size_t m) {
* are out of range, act as if the bits are set / bitmap is full - this is * are out of range, act as if the bits are set / bitmap is full - this is
* useful for implementing the physical memory manager algorithm. * useful for implementing the physical memory manager algorithm.
*/ */
bool bm_test_region(struct bm *bm, size_t k, size_t m) { bool bm_test_region (struct bm* bm, size_t k, size_t m) {
if ((k >= m) || (k >= bm->nbits) || (k + m >= bm->nbits)) if ((k >= m) || (k >= bm->nbits) || (k + m >= bm->nbits))
return true; return true;
for (size_t i = k; i < m; i++) { for (size_t i = k; i < m; i++) {
bool test = bm_test(bm, i); bool test = bm_test (bm, i);
if (test) if (test)
return true; return true;
} }

View File

@@ -4,16 +4,16 @@
#include <libk/std.h> #include <libk/std.h>
struct bm { struct bm {
uint8_t *base; uint8_t* base;
size_t nbits; size_t nbits;
}; };
void bm_init(struct bm *bm, uint8_t *base, size_t nbits); void bm_init (struct bm* bm, uint8_t* base, size_t nbits);
void bm_set(struct bm *bm, size_t k); void bm_set (struct bm* bm, size_t k);
bool bm_set_region(struct bm *bm, size_t k, size_t m); bool bm_set_region (struct bm* bm, size_t k, size_t m);
void bm_clear(struct bm *bm, size_t k); void bm_clear (struct bm* bm, size_t k);
void bm_clear_region(struct bm *bm, size_t k, size_t m); void bm_clear_region (struct bm* bm, size_t k, size_t m);
bool bm_test(struct bm *bm, size_t k); bool bm_test (struct bm* bm, size_t k);
bool bm_test_region(struct bm *bm, size_t k, size_t m); bool bm_test_region (struct bm* bm, size_t k, size_t m);
#endif // _KERNEL_LIBK_BM_H #endif // _KERNEL_LIBK_BM_H

View File

@@ -1,3 +1,2 @@
void putchar_(char x) { (void)x; } void putchar_ (char x) { (void)x; }

View File

@@ -4,10 +4,10 @@
#include <limits.h> #include <limits.h>
#include <stdalign.h> #include <stdalign.h>
#include <stdarg.h> #include <stdarg.h>
#include <stdatomic.h>
#include <stdbool.h> #include <stdbool.h>
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <stdnoreturn.h> #include <stdnoreturn.h>
#include <stdatomic.h>
#endif // _KERNEL_LIBK_STD_H #endif // _KERNEL_LIBK_STD_H

View File

@@ -1,17 +1,17 @@
#include <libk/std.h> #include <libk/std.h>
#include <libk/string.h> #include <libk/string.h>
size_t memset(void *dst, uint8_t b, size_t n) { size_t memset (void* dst, uint8_t b, size_t n) {
uint8_t *dst1 = dst; uint8_t* dst1 = dst;
size_t i; size_t i;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)
dst1[i] = b; dst1[i] = b;
return i; return i;
} }
size_t memcpy(void *dst, const void *src, size_t n) { size_t memcpy (void* dst, const void* src, size_t n) {
uint8_t *dst1 = dst; uint8_t* dst1 = dst;
const uint8_t *src1 = src; const uint8_t* src1 = src;
size_t i; size_t i;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)
dst1[i] = src1[i]; dst1[i] = src1[i];
@@ -19,20 +19,22 @@ size_t memcpy(void *dst, const void *src, size_t n) {
} }
// SOURCE: https://stackoverflow.com/a/48967408 // SOURCE: https://stackoverflow.com/a/48967408
void strncpy(char* dst, const char* src, size_t n) { void strncpy (char* dst, const char* src, size_t n) {
size_t i = 0; size_t i = 0;
while(i++ != n && (*dst++ = *src++)); while (i++ != n && (*dst++ = *src++))
;
} }
size_t strlen(const char *str) { size_t strlen (const char* str) {
const char *s; const char* s;
for (s = str; *s; ++s); for (s = str; *s; ++s)
;
return (s - str); return (s - str);
} }
int memcmp(const void *s1, const void *s2, size_t n) { int memcmp (const void* s1, const void* s2, size_t n) {
unsigned char *p = (unsigned char *)s1; unsigned char* p = (unsigned char*)s1;
unsigned char *q = (unsigned char *)s2; unsigned char* q = (unsigned char*)s2;
while (n--) { while (n--) {
if (*p != *q) { if (*p != *q) {

View File

@@ -1,10 +1,10 @@
#ifndef _KERNEL_LIBK_STRING_H #ifndef _KERNEL_LIBK_STRING_H
#define _KERNEL_LIBK_STRING_H #define _KERNEL_LIBK_STRING_H
size_t memset(void *dst, uint8_t b, size_t n); size_t memset (void* dst, uint8_t b, size_t n);
size_t memcpy(void *dst, const void *src, size_t n); size_t memcpy (void* dst, const void* src, size_t n);
void strncpy(char* dst, const char* src, size_t n); void strncpy (char* dst, const char* src, size_t n);
size_t strlen(const char *str); size_t strlen (const char* str);
int memcmp(const void *s1, const void *s2, size_t n); int memcmp (const void* s1, const void* s2, size_t n);
#endif // _KERNEL_LIBK_STRING_H #endif // _KERNEL_LIBK_STRING_H

View File

@@ -1,21 +1,21 @@
#include <limine/limine.h> #include <limine/limine.h>
#define DECL_REQ(small, big) \ #define DECL_REQ(small, big) \
__attribute__((used, section(".limine_requests"))) \ __attribute__ (( \
struct limine_ ## small ## _request limine_ ## small ## _request = { \ used, section (".limine_requests"))) struct limine_##small##_request \
.id = LIMINE_ ## big ## _REQUEST_ID, \ limine_##small##_request = { \
.revision = 4 \ .id = LIMINE_##big##_REQUEST_ID, .revision = 4}
}
__attribute__((used, section(".limine_requests"))) __attribute__ ((used,
volatile uint64_t limine_base_revision[] = LIMINE_BASE_REVISION(4); section (".limine_requests"))) volatile uint64_t limine_base_revision[] =
LIMINE_BASE_REVISION (4);
__attribute__((used, section(".limine_requests_start"))) __attribute__ ((used, section (".limine_requests_start"))) volatile uint64_t
volatile uint64_t limine_requests_start_marker[] = LIMINE_REQUESTS_START_MARKER; limine_requests_start_marker[] = LIMINE_REQUESTS_START_MARKER;
__attribute__((used, section(".limine_requests_end"))) __attribute__ ((used, section (".limine_requests_end"))) volatile uint64_t
volatile uint64_t limine_requests_end_marker[] = LIMINE_REQUESTS_END_MARKER; limine_requests_end_marker[] = LIMINE_REQUESTS_END_MARKER;
DECL_REQ(hhdm, HHDM); DECL_REQ (hhdm, HHDM);
DECL_REQ(memmap, MEMMAP); DECL_REQ (memmap, MEMMAP);
DECL_REQ(rsdp, RSDP); DECL_REQ (rsdp, RSDP);

View File

@@ -4,10 +4,10 @@
#include <limine/limine.h> #include <limine/limine.h>
#define EXTERN_REQ(small) \ #define EXTERN_REQ(small) \
extern struct limine_ ## small ## _request limine_ ## small ## _request extern struct limine_##small##_request limine_##small##_request
EXTERN_REQ(hhdm); EXTERN_REQ (hhdm);
EXTERN_REQ(memmap); EXTERN_REQ (memmap);
EXTERN_REQ(rsdp); EXTERN_REQ (rsdp);
#endif // _KERNEL_LIMINE_REQUESTS_H #endif // _KERNEL_LIMINE_REQUESTS_H

View File

@@ -1,42 +1,42 @@
/* liballoc breaks when optimized too aggressively, for eg. clang's -Oz */ /* liballoc breaks when optimized too aggressively, for eg. clang's -Oz */
#pragma clang optimize off #pragma clang optimize off
#include <limine/requests.h>
#include <mm/liballoc.h> #include <mm/liballoc.h>
#include <mm/pmm.h> #include <mm/pmm.h>
#include <mm/types.h> #include <mm/types.h>
#include <sync/spin_lock.h> #include <sync/spin_lock.h>
#include <limine/requests.h>
/* Porting */ /* Porting */
spin_lock_t _liballoc_lock = SPIN_LOCK_INIT; spin_lock_t _liballoc_lock = SPIN_LOCK_INIT;
int liballoc_lock(void) { int liballoc_lock (void) {
spin_lock(&_liballoc_lock); spin_lock (&_liballoc_lock);
return 0; return 0;
} }
int liballoc_unlock(void) { int liballoc_unlock (void) {
spin_unlock(&_liballoc_lock); spin_unlock (&_liballoc_lock);
return 0; return 0;
} }
void *liballoc_alloc(int pages) { void* liballoc_alloc (int pages) {
physaddr_t p_addr = pmm_alloc(pages); physaddr_t p_addr = pmm_alloc (pages);
if (p_addr == PMM_ALLOC_ERR) if (p_addr == PMM_ALLOC_ERR)
return NULL; return NULL;
struct limine_hhdm_response *hhdm = limine_hhdm_request.response; struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
uintptr_t addr = (uintptr_t)(p_addr + hhdm->offset); uintptr_t addr = (uintptr_t)(p_addr + hhdm->offset);
return (void *)addr; return (void*)addr;
} }
int liballoc_free(void *ptr, int pages) { int liballoc_free (void* ptr, int pages) {
struct limine_hhdm_response *hhdm = limine_hhdm_request.response; struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
physaddr_t p_addr = (uintptr_t)ptr - hhdm->offset; physaddr_t p_addr = (uintptr_t)ptr - hhdm->offset;
pmm_free(p_addr, pages); pmm_free (p_addr, pages);
return 0; return 0;
} }
@@ -59,82 +59,71 @@ int liballoc_free(void *ptr, int pages) {
#include <stdio.h> #include <stdio.h>
#endif #endif
struct boundary_tag* l_freePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks struct boundary_tag* l_freePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks
int l_completePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks int l_completePages[MAXEXP]; //< Allowing for 2^MAXEXP blocks
#ifdef DEBUG #ifdef DEBUG
unsigned int l_allocated = 0; //< The real amount of memory allocated. unsigned int l_allocated = 0; //< The real amount of memory allocated.
unsigned int l_inuse = 0; //< The amount of memory in use (malloc'ed). unsigned int l_inuse = 0; //< The amount of memory in use (malloc'ed).
#endif #endif
static int l_initialized = 0; //< Flag to indicate initialization. static int l_initialized = 0; //< Flag to indicate initialization.
static int l_pageSize = 4096; //< Individual page size static int l_pageSize = 4096; //< Individual page size
static int l_pageCount = 16; //< Minimum number of pages to allocate. static int l_pageCount = 16; //< Minimum number of pages to allocate.
// *********** HELPER FUNCTIONS ******************************* // *********** HELPER FUNCTIONS *******************************
/** Returns the exponent required to manage 'size' amount of memory. /** Returns the exponent required to manage 'size' amount of memory.
* *
* Returns n where 2^n <= size < 2^(n+1) * Returns n where 2^n <= size < 2^(n+1)
*/ */
static inline int getexp( unsigned int size ) static inline int getexp (unsigned int size) {
{ if (size < (1 << MINEXP)) {
if ( size < (1<<MINEXP) ) #ifdef DEBUG
{ printf ("getexp returns -1 for %i less than MINEXP\n", size);
#ifdef DEBUG #endif
printf("getexp returns -1 for %i less than MINEXP\n", size );
#endif
return -1; // Smaller than the quantum. return -1; // Smaller than the quantum.
} }
int shift = MINEXP; int shift = MINEXP;
while ( shift < MAXEXP ) while (shift < MAXEXP) {
{ if ((1 << shift) > size)
if ( (1<<shift) > size ) break; break;
shift += 1; shift += 1;
} }
#ifdef DEBUG #ifdef DEBUG
printf("getexp returns %i (%i bytes) for %i size\n", shift - 1, (1<<(shift -1)), size ); printf ("getexp returns %i (%i bytes) for %i size\n", shift - 1,
#endif (1 << (shift - 1)), size);
#endif
return shift - 1; return shift - 1;
} }
static void* liballoc_memset (void* s, int c, size_t n) {
static void* liballoc_memset(void* s, int c, size_t n)
{
size_t i; size_t i;
for ( i = 0; i < n ; i++) for (i = 0; i < n; i++)
((char*)s)[i] = c; ((char*)s)[i] = c;
return s; return s;
} }
static void* liballoc_memcpy(void* s1, const void* s2, size_t n) static void* liballoc_memcpy (void* s1, const void* s2, size_t n) {
{ char* cdest;
char *cdest; char* csrc;
char *csrc; unsigned int* ldest = (unsigned int*)s1;
unsigned int *ldest = (unsigned int*)s1; unsigned int* lsrc = (unsigned int*)s2;
unsigned int *lsrc = (unsigned int*)s2;
while ( n >= sizeof(unsigned int) ) while (n >= sizeof (unsigned int)) {
{
*ldest++ = *lsrc++; *ldest++ = *lsrc++;
n -= sizeof(unsigned int); n -= sizeof (unsigned int);
} }
cdest = (char*)ldest; cdest = (char*)ldest;
csrc = (char*)lsrc; csrc = (char*)lsrc;
while ( n > 0 ) while (n > 0) {
{
*cdest++ = *csrc++; *cdest++ = *csrc++;
n -= 1; n -= 1;
} }
@@ -142,112 +131,103 @@ static void* liballoc_memcpy(void* s1, const void* s2, size_t n)
return s1; return s1;
} }
#ifdef DEBUG #ifdef DEBUG
static void dump_array() static void dump_array () {
{
int i = 0; int i = 0;
struct boundary_tag *tag = NULL; struct boundary_tag* tag = NULL;
printf("------ Free pages array ---------\n"); printf ("------ Free pages array ---------\n");
printf("System memory allocated: %i\n", l_allocated ); printf ("System memory allocated: %i\n", l_allocated);
printf("Memory in used (malloc'ed): %i\n", l_inuse ); printf ("Memory in used (malloc'ed): %i\n", l_inuse);
for ( i = 0; i < MAXEXP; i++ ) for (i = 0; i < MAXEXP; i++) {
{ printf ("%.2i(%i): ", i, l_completePages[i]);
printf("%.2i(%i): ",i, l_completePages[i] );
tag = l_freePages[ i ]; tag = l_freePages[i];
while ( tag != NULL ) while (tag != NULL) {
{ if (tag->split_left != NULL)
if ( tag->split_left != NULL ) printf("*"); printf ("*");
printf("%i", tag->real_size ); printf ("%i", tag->real_size);
if ( tag->split_right != NULL ) printf("*"); if (tag->split_right != NULL)
printf ("*");
printf(" "); printf (" ");
tag = tag->next; tag = tag->next;
} }
printf("\n"); printf ("\n");
} }
printf("'*' denotes a split to the left/right of a tag\n"); printf ("'*' denotes a split to the left/right of a tag\n");
fflush( stdout ); fflush (stdout);
} }
#endif #endif
static inline void insert_tag (struct boundary_tag* tag, int index) {
static inline void insert_tag( struct boundary_tag *tag, int index )
{
int realIndex; int realIndex;
if ( index < 0 ) if (index < 0) {
{ realIndex = getexp (tag->real_size - sizeof (struct boundary_tag));
realIndex = getexp( tag->real_size - sizeof(struct boundary_tag) ); if (realIndex < MINEXP)
if ( realIndex < MINEXP ) realIndex = MINEXP; realIndex = MINEXP;
} } else
else
realIndex = index; realIndex = index;
tag->index = realIndex; tag->index = realIndex;
if ( l_freePages[ realIndex ] != NULL ) if (l_freePages[realIndex] != NULL) {
{ l_freePages[realIndex]->prev = tag;
l_freePages[ realIndex ]->prev = tag; tag->next = l_freePages[realIndex];
tag->next = l_freePages[ realIndex ];
} }
l_freePages[ realIndex ] = tag; l_freePages[realIndex] = tag;
} }
static inline void remove_tag( struct boundary_tag *tag ) static inline void remove_tag (struct boundary_tag* tag) {
{ if (l_freePages[tag->index] == tag)
if ( l_freePages[ tag->index ] == tag ) l_freePages[ tag->index ] = tag->next; l_freePages[tag->index] = tag->next;
if ( tag->prev != NULL ) tag->prev->next = tag->next; if (tag->prev != NULL)
if ( tag->next != NULL ) tag->next->prev = tag->prev; tag->prev->next = tag->next;
if (tag->next != NULL)
tag->next->prev = tag->prev;
tag->next = NULL; tag->next = NULL;
tag->prev = NULL; tag->prev = NULL;
tag->index = -1; tag->index = -1;
} }
static inline struct boundary_tag* melt_left (struct boundary_tag* tag) {
static inline struct boundary_tag* melt_left( struct boundary_tag *tag ) struct boundary_tag* left = tag->split_left;
{
struct boundary_tag *left = tag->split_left;
left->real_size += tag->real_size; left->real_size += tag->real_size;
left->split_right = tag->split_right; left->split_right = tag->split_right;
if ( tag->split_right != NULL ) tag->split_right->split_left = left; if (tag->split_right != NULL)
tag->split_right->split_left = left;
return left; return left;
} }
static inline struct boundary_tag* absorb_right (struct boundary_tag* tag) {
struct boundary_tag* right = tag->split_right;
static inline struct boundary_tag* absorb_right( struct boundary_tag *tag ) remove_tag (right); // Remove right from free pages.
{
struct boundary_tag *right = tag->split_right;
remove_tag( right ); // Remove right from free pages.
tag->real_size += right->real_size; tag->real_size += right->real_size;
tag->split_right = right->split_right; tag->split_right = right->split_right;
if ( right->split_right != NULL ) if (right->split_right != NULL)
right->split_right->split_left = tag; right->split_right->split_left = tag;
return tag; return tag;
} }
static inline struct boundary_tag* split_tag( struct boundary_tag* tag ) static inline struct boundary_tag* split_tag (struct boundary_tag* tag) {
{ unsigned int remainder =
unsigned int remainder = tag->real_size - sizeof(struct boundary_tag) - tag->size; tag->real_size - sizeof (struct boundary_tag) - tag->size;
struct boundary_tag *new_tag = struct boundary_tag* new_tag = (struct boundary_tag*)((uintptr_t)tag +
(struct boundary_tag*)((uintptr_t)tag + sizeof(struct boundary_tag) + tag->size); sizeof (struct boundary_tag) + tag->size);
new_tag->magic = LIBALLOC_MAGIC; new_tag->magic = LIBALLOC_MAGIC;
new_tag->real_size = remainder; new_tag->real_size = remainder;
@@ -258,41 +238,40 @@ static inline struct boundary_tag* split_tag( struct boundary_tag* tag )
new_tag->split_left = tag; new_tag->split_left = tag;
new_tag->split_right = tag->split_right; new_tag->split_right = tag->split_right;
if (new_tag->split_right != NULL) new_tag->split_right->split_left = new_tag; if (new_tag->split_right != NULL)
new_tag->split_right->split_left = new_tag;
tag->split_right = new_tag; tag->split_right = new_tag;
tag->real_size -= new_tag->real_size; tag->real_size -= new_tag->real_size;
insert_tag( new_tag, -1 ); insert_tag (new_tag, -1);
return new_tag; return new_tag;
} }
// *************************************************************** // ***************************************************************
static struct boundary_tag* allocate_new_tag (unsigned int size) {
static struct boundary_tag* allocate_new_tag( unsigned int size )
{
unsigned int pages; unsigned int pages;
unsigned int usage; unsigned int usage;
struct boundary_tag *tag; struct boundary_tag* tag;
// This is how much space is required. // This is how much space is required.
usage = size + sizeof(struct boundary_tag); usage = size + sizeof (struct boundary_tag);
// Perfect amount of space // Perfect amount of space
pages = usage / l_pageSize; pages = usage / l_pageSize;
if ( (usage % l_pageSize) != 0 ) pages += 1; if ((usage % l_pageSize) != 0)
pages += 1;
// Make sure it's >= the minimum size. // Make sure it's >= the minimum size.
if ( pages < (unsigned int)l_pageCount ) pages = l_pageCount; if (pages < (unsigned int)l_pageCount)
pages = l_pageCount;
tag = (struct boundary_tag*)liballoc_alloc( pages ); tag = (struct boundary_tag*)liballoc_alloc (pages);
if ( tag == NULL ) return NULL; // uh oh, we ran out of memory. if (tag == NULL)
return NULL; // uh oh, we ran out of memory.
tag->magic = LIBALLOC_MAGIC; tag->magic = LIBALLOC_MAGIC;
tag->size = size; tag->size = size;
@@ -304,80 +283,70 @@ static struct boundary_tag* allocate_new_tag( unsigned int size )
tag->split_left = NULL; tag->split_left = NULL;
tag->split_right = NULL; tag->split_right = NULL;
#ifdef DEBUG
#ifdef DEBUG printf ("Resource allocated %x of %i pages (%i bytes) for %i size.\n", tag,
printf("Resource allocated %x of %i pages (%i bytes) for %i size.\n", tag, pages, pages * l_pageSize, size ); pages, pages * l_pageSize, size);
l_allocated += pages * l_pageSize; l_allocated += pages * l_pageSize;
printf("Total memory usage = %i KB\n", (int)((l_allocated / (1024))) ); printf ("Total memory usage = %i KB\n", (int)((l_allocated / (1024))));
#endif #endif
return tag; return tag;
} }
void* malloc (size_t size) {
void *malloc(size_t size)
{
int index; int index;
void *ptr; void* ptr;
struct boundary_tag *tag = NULL; struct boundary_tag* tag = NULL;
liballoc_lock(); liballoc_lock ();
if ( l_initialized == 0 ) if (l_initialized == 0) {
{ #ifdef DEBUG
#ifdef DEBUG printf ("%s\n", "liballoc initializing.");
printf("%s\n","liballoc initializing."); #endif
#endif for (index = 0; index < MAXEXP; index++) {
for ( index = 0; index < MAXEXP; index++ )
{
l_freePages[index] = NULL; l_freePages[index] = NULL;
l_completePages[index] = 0; l_completePages[index] = 0;
} }
l_initialized = 1; l_initialized = 1;
} }
index = getexp( size ) + MODE; index = getexp (size) + MODE;
if ( index < MINEXP ) index = MINEXP; if (index < MINEXP)
index = MINEXP;
// Find one big enough. // Find one big enough.
tag = l_freePages[ index ]; // Start at the front of the list. tag = l_freePages[index]; // Start at the front of the list.
while ( tag != NULL ) while (tag != NULL) {
{
// If there's enough space in this tag. // If there's enough space in this tag.
if ( (tag->real_size - sizeof(struct boundary_tag)) if ((tag->real_size - sizeof (struct boundary_tag)) >=
>= (size + sizeof(struct boundary_tag) ) ) (size + sizeof (struct boundary_tag))) {
{ #ifdef DEBUG
#ifdef DEBUG printf ("Tag search found %i >= %i\n",
printf("Tag search found %i >= %i\n",(tag->real_size - sizeof(struct boundary_tag)), (size + sizeof(struct boundary_tag) ) ); (tag->real_size - sizeof (struct boundary_tag)),
#endif (size + sizeof (struct boundary_tag)));
#endif
break; break;
} }
tag = tag->next; tag = tag->next;
} }
// No page found. Make one. // No page found. Make one.
if ( tag == NULL ) if (tag == NULL) {
{ if ((tag = allocate_new_tag (size)) == NULL) {
if ( (tag = allocate_new_tag( size )) == NULL ) liballoc_unlock ();
{
liballoc_unlock();
return NULL; return NULL;
} }
index = getexp( tag->real_size - sizeof(struct boundary_tag) ); index = getexp (tag->real_size - sizeof (struct boundary_tag));
} } else {
else remove_tag (tag);
{
remove_tag( tag );
if ( (tag->split_left == NULL) && (tag->split_right == NULL) ) if ((tag->split_left == NULL) && (tag->split_right == NULL))
l_completePages[ index ] -= 1; l_completePages[index] -= 1;
} }
// We have a free page. Remove it from the free pages list. // We have a free page. Remove it from the free pages list.
@@ -386,190 +355,178 @@ void *malloc(size_t size)
// Removed... see if we can re-use the excess space. // Removed... see if we can re-use the excess space.
#ifdef DEBUG #ifdef DEBUG
printf("Found tag with %i bytes available (requested %i bytes, leaving %i), which has exponent: %i (%i bytes)\n", tag->real_size - sizeof(struct boundary_tag), size, tag->real_size - size - sizeof(struct boundary_tag), index, 1<<index ); printf (
#endif "Found tag with %i bytes available (requested %i bytes, leaving %i), which has exponent: %i (%i bytes)\n",
tag->real_size - sizeof (struct boundary_tag), size,
tag->real_size - size - sizeof (struct boundary_tag), index, 1 << index);
#endif
unsigned int remainder = tag->real_size - size - sizeof( struct boundary_tag ) * 2; // Support a new tag + remainder unsigned int remainder = tag->real_size - size -
sizeof (struct boundary_tag) * 2; // Support a new tag + remainder
if ( ((int)(remainder) > 0) /*&& ( (tag->real_size - remainder) >= (1<<MINEXP))*/ ) if (((int)(remainder) >
{ 0) /*&& ( (tag->real_size - remainder) >= (1<<MINEXP))*/) {
int childIndex = getexp( remainder ); int childIndex = getexp (remainder);
if ( childIndex >= 0 ) if (childIndex >= 0) {
{ #ifdef DEBUG
#ifdef DEBUG printf ("Seems to be splittable: %i >= 2^%i .. %i\n", remainder,
printf("Seems to be splittable: %i >= 2^%i .. %i\n", remainder, childIndex, (1<<childIndex) ); childIndex, (1 << childIndex));
#endif #endif
struct boundary_tag *new_tag = split_tag( tag ); struct boundary_tag* new_tag = split_tag (tag);
(void)new_tag; (void)new_tag;
#ifdef DEBUG #ifdef DEBUG
printf("Old tag has become %i bytes, new tag is now %i bytes (%i exp)\n", tag->real_size, new_tag->real_size, new_tag->index ); printf ("Old tag has become %i bytes, new tag is now %i bytes (%i exp)\n",
#endif tag->real_size, new_tag->real_size, new_tag->index);
#endif
} }
} }
ptr = (void*)((uintptr_t)tag + sizeof (struct boundary_tag));
#ifdef DEBUG
ptr = (void*)((uintptr_t)tag + sizeof( struct boundary_tag ) );
#ifdef DEBUG
l_inuse += size; l_inuse += size;
printf("malloc: %x, %i, %i\n", ptr, (int)l_inuse / 1024, (int)l_allocated / 1024 ); printf ("malloc: %x, %i, %i\n", ptr, (int)l_inuse / 1024,
dump_array(); (int)l_allocated / 1024);
#endif dump_array ();
#endif
liballoc_unlock ();
liballoc_unlock();
return ptr; return ptr;
} }
void free (void* ptr) {
void free(void *ptr)
{
int index; int index;
struct boundary_tag *tag; struct boundary_tag* tag;
if ( ptr == NULL ) return; if (ptr == NULL)
return;
liballoc_lock(); liballoc_lock ();
tag = (struct boundary_tag*)((uintptr_t)ptr - sizeof (struct boundary_tag));
tag = (struct boundary_tag*)((uintptr_t)ptr - sizeof( struct boundary_tag )); if (tag->magic != LIBALLOC_MAGIC) {
liballoc_unlock (); // release the lock
if ( tag->magic != LIBALLOC_MAGIC )
{
liballoc_unlock(); // release the lock
return; return;
} }
#ifdef DEBUG
#ifdef DEBUG
l_inuse -= tag->size; l_inuse -= tag->size;
printf("free: %x, %i, %i\n", ptr, (int)l_inuse / 1024, (int)l_allocated / 1024 ); printf (
#endif "free: %x, %i, %i\n", ptr, (int)l_inuse / 1024, (int)l_allocated / 1024);
#endif
// MELT LEFT... // MELT LEFT...
while ( (tag->split_left != NULL) && (tag->split_left->index >= 0) ) while ((tag->split_left != NULL) && (tag->split_left->index >= 0)) {
{ #ifdef DEBUG
#ifdef DEBUG printf (
printf("Melting tag left into available memory. Left was %i, becomes %i (%i)\n", tag->split_left->real_size, tag->split_left->real_size + tag->real_size, tag->split_left->real_size ); "Melting tag left into available memory. Left was %i, becomes %i (%i)\n",
#endif tag->split_left->real_size, tag->split_left->real_size + tag->real_size,
tag = melt_left( tag ); tag->split_left->real_size);
remove_tag( tag ); #endif
tag = melt_left (tag);
remove_tag (tag);
} }
// MELT RIGHT... // MELT RIGHT...
while ( (tag->split_right != NULL) && (tag->split_right->index >= 0) ) while ((tag->split_right != NULL) && (tag->split_right->index >= 0)) {
{ #ifdef DEBUG
#ifdef DEBUG printf (
printf("Melting tag right into available memory. This was was %i, becomes %i (%i)\n", tag->real_size, tag->split_right->real_size + tag->real_size, tag->split_right->real_size ); "Melting tag right into available memory. This was was %i, becomes %i (%i)\n",
#endif tag->real_size, tag->split_right->real_size + tag->real_size,
tag = absorb_right( tag ); tag->split_right->real_size);
#endif
tag = absorb_right (tag);
} }
// Where is it going back to? // Where is it going back to?
index = getexp( tag->real_size - sizeof(struct boundary_tag) ); index = getexp (tag->real_size - sizeof (struct boundary_tag));
if ( index < MINEXP ) index = MINEXP; if (index < MINEXP)
index = MINEXP;
// A whole, empty block? // A whole, empty block?
if ( (tag->split_left == NULL) && (tag->split_right == NULL) ) if ((tag->split_left == NULL) && (tag->split_right == NULL)) {
{ if (l_completePages[index] == MAXCOMPLETE) {
if ( l_completePages[ index ] == MAXCOMPLETE )
{
// Too many standing by to keep. Free this one. // Too many standing by to keep. Free this one.
unsigned int pages = tag->real_size / l_pageSize; unsigned int pages = tag->real_size / l_pageSize;
if ( (tag->real_size % l_pageSize) != 0 ) pages += 1; if ((tag->real_size % l_pageSize) != 0)
if ( pages < (unsigned int)l_pageCount ) pages = l_pageCount; pages += 1;
if (pages < (unsigned int)l_pageCount)
pages = l_pageCount;
liballoc_free( tag, pages ); liballoc_free (tag, pages);
#ifdef DEBUG #ifdef DEBUG
l_allocated -= pages * l_pageSize; l_allocated -= pages * l_pageSize;
printf("Resource freeing %x of %i pages\n", tag, pages ); printf ("Resource freeing %x of %i pages\n", tag, pages);
dump_array(); dump_array ();
#endif #endif
liballoc_unlock(); liballoc_unlock ();
return; return;
} }
l_completePages[index] += 1; // Increase the count of complete pages.
l_completePages[ index ] += 1; // Increase the count of complete pages.
} }
// .......... // ..........
insert_tag (tag, index);
insert_tag( tag, index ); #ifdef DEBUG
printf (
"Returning tag with %i bytes (requested %i bytes), which has exponent: %i\n",
tag->real_size, tag->size, index);
dump_array ();
#endif
#ifdef DEBUG liballoc_unlock ();
printf("Returning tag with %i bytes (requested %i bytes), which has exponent: %i\n", tag->real_size, tag->size, index );
dump_array();
#endif
liballoc_unlock();
} }
void* calloc (size_t nobj, size_t size) {
void* calloc(size_t nobj, size_t size)
{
int real_size; int real_size;
void *p; void* p;
real_size = nobj * size; real_size = nobj * size;
p = malloc( real_size ); p = malloc (real_size);
liballoc_memset( p, 0, real_size ); liballoc_memset (p, 0, real_size);
return p; return p;
} }
void* realloc (void* p, size_t size) {
void* ptr;
void* realloc(void *p, size_t size) struct boundary_tag* tag;
{
void *ptr;
struct boundary_tag *tag;
int real_size; int real_size;
if ( size == 0 ) if (size == 0) {
{ free (p);
free( p );
return NULL; return NULL;
} }
if ( p == NULL ) return malloc( size ); if (p == NULL)
return malloc (size);
if ( &liballoc_lock != NULL ) liballoc_lock(); // lockit if (&liballoc_lock != NULL)
tag = (struct boundary_tag*)((uintptr_t)p - sizeof( struct boundary_tag )); liballoc_lock (); // lockit
tag = (struct boundary_tag*)((uintptr_t)p - sizeof (struct boundary_tag));
real_size = tag->size; real_size = tag->size;
if ( &liballoc_unlock != NULL ) liballoc_unlock(); if (&liballoc_unlock != NULL)
liballoc_unlock ();
if ( (size_t)real_size > size ) real_size = size; if ((size_t)real_size > size)
real_size = size;
ptr = malloc( size ); ptr = malloc (size);
liballoc_memcpy( ptr, p, real_size ); liballoc_memcpy (ptr, p, real_size);
free( p ); free (p);
return ptr; return ptr;
} }

View File

@@ -12,7 +12,6 @@
typedef unsigned int size_t; typedef unsigned int size_t;
#endif #endif
#ifndef NULL #ifndef NULL
#define NULL 0 #define NULL 0
#endif #endif
@@ -23,29 +22,24 @@ typedef unsigned int size_t;
extern "C" { extern "C" {
#endif #endif
/** This is a boundary tag which is prepended to the /** This is a boundary tag which is prepended to the
* page or section of a page which we have allocated. It is * page or section of a page which we have allocated. It is
* used to identify valid memory blocks that the * used to identify valid memory blocks that the
* application is trying to free. * application is trying to free.
*/ */
struct boundary_tag struct boundary_tag {
{
unsigned int magic; //< It's a kind of ... unsigned int magic; //< It's a kind of ...
unsigned int size; //< Requested size. unsigned int size; //< Requested size.
unsigned int real_size; //< Actual size. unsigned int real_size; //< Actual size.
int index; //< Location in the page table. int index; //< Location in the page table.
struct boundary_tag *split_left; //< Linked-list info for broken pages. struct boundary_tag* split_left; //< Linked-list info for broken pages.
struct boundary_tag *split_right; //< The same. struct boundary_tag* split_right; //< The same.
struct boundary_tag *next; //< Linked list info. struct boundary_tag* next; //< Linked list info.
struct boundary_tag *prev; //< Linked list info. struct boundary_tag* prev; //< Linked list info.
}; };
/** This function is supposed to lock the memory data structures. It /** This function is supposed to lock the memory data structures. It
* could be as simple as disabling interrupts or acquiring a spinlock. * could be as simple as disabling interrupts or acquiring a spinlock.
* It's up to you to decide. * It's up to you to decide.
@@ -53,7 +47,7 @@ struct boundary_tag
* \return 0 if the lock was acquired successfully. Anything else is * \return 0 if the lock was acquired successfully. Anything else is
* failure. * failure.
*/ */
extern int liballoc_lock(); extern int liballoc_lock ();
/** This function unlocks what was previously locked by the liballoc_lock /** This function unlocks what was previously locked by the liballoc_lock
* function. If it disabled interrupts, it enables interrupts. If it * function. If it disabled interrupts, it enables interrupts. If it
@@ -61,7 +55,7 @@ extern int liballoc_lock();
* *
* \return 0 if the lock was successfully released. * \return 0 if the lock was successfully released.
*/ */
extern int liballoc_unlock(); extern int liballoc_unlock ();
/** This is the hook into the local system which allocates pages. It /** This is the hook into the local system which allocates pages. It
* accepts an integer parameter which is the number of pages * accepts an integer parameter which is the number of pages
@@ -70,7 +64,7 @@ extern int liballoc_unlock();
* \return NULL if the pages were not allocated. * \return NULL if the pages were not allocated.
* \return A pointer to the allocated memory. * \return A pointer to the allocated memory.
*/ */
extern void* liballoc_alloc(int); extern void* liballoc_alloc (int);
/** This frees previously allocated memory. The void* parameter passed /** This frees previously allocated memory. The void* parameter passed
* to the function is the exact same value returned from a previous * to the function is the exact same value returned from a previous
@@ -80,20 +74,15 @@ extern void* liballoc_alloc(int);
* *
* \return 0 if the memory was successfully freed. * \return 0 if the memory was successfully freed.
*/ */
extern int liballoc_free(void*,int); extern int liballoc_free (void*, int);
void *malloc(size_t); //< The standard function.
void *realloc(void *, size_t); //< The standard function.
void *calloc(size_t, size_t); //< The standard function.
void free(void *); //< The standard function.
void* malloc (size_t); //< The standard function.
void* realloc (void*, size_t); //< The standard function.
void* calloc (size_t, size_t); //< The standard function.
void free (void*); //< The standard function.
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
#endif #endif

View File

@@ -1,52 +1,51 @@
#include <libk/std.h>
#include <libk/bm.h>
#include <libk/string.h>
#include <libk/align.h> #include <libk/align.h>
#include <sys/mm.h> #include <libk/bm.h>
#include <sys/debug.h> #include <libk/std.h>
#include <sync/spin_lock.h> #include <libk/string.h>
#include <mm/types.h>
#include <mm/pmm.h>
#include <limine/limine.h> #include <limine/limine.h>
#include <limine/requests.h> #include <limine/requests.h>
#include <mm/pmm.h>
#include <mm/types.h>
#include <sync/spin_lock.h>
#include <sys/debug.h>
#include <sys/mm.h>
static struct pmm pmm; static struct pmm pmm;
void pmm_init(void) { void pmm_init (void) {
memset(&pmm, 0, sizeof(pmm)); memset (&pmm, 0, sizeof (pmm));
struct limine_memmap_response *memmap = limine_memmap_request.response; struct limine_memmap_response* memmap = limine_memmap_request.response;
struct limine_hhdm_response *hhdm = limine_hhdm_request.response; struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
size_t region = 0; size_t region = 0;
for (size_t i = 0; i < memmap->entry_count; i++) { for (size_t i = 0; i < memmap->entry_count; i++) {
struct limine_memmap_entry *entry = memmap->entries[i]; struct limine_memmap_entry* entry = memmap->entries[i];
static const char *entry_strings[] = { static const char* entry_strings[] = {"usable", "reserved",
"usable", "reserved", "acpi reclaimable", "acpi nvs", "acpi reclaimable", "acpi nvs", "bad memory", "bootloader reclaimable",
"bad memory", "bootloader reclaimable", "executable and modules", "executable and modules", "framebuffer", "acpi tables"};
"framebuffer", "acpi tables"
};
DEBUG("memmap entry: %-25s %p (%zu bytes)\n", entry_strings[entry->type], entry->base, entry->length); DEBUG ("memmap entry: %-25s %p (%zu bytes)\n", entry_strings[entry->type],
entry->base, entry->length);
if (entry->type == LIMINE_MEMMAP_USABLE && region < PMM_REGIONS_MAX) { if (entry->type == LIMINE_MEMMAP_USABLE && region < PMM_REGIONS_MAX) {
struct pmm_region *pmm_region = &pmm.regions[region]; struct pmm_region* pmm_region = &pmm.regions[region];
/* /*
* We need to calculate sizes for the pmm region and the bitmap. The bitmap MUSTN'T include it's * We need to calculate sizes for the pmm region and the bitmap. The bitmap MUSTN'T include it's
* own region within the bit range. * own region within the bit range.
* */ * */
size_t size = align_down(entry->length, PAGE_SIZE); size_t size = align_down (entry->length, PAGE_SIZE);
physaddr_t start = align_up(entry->base, PAGE_SIZE); physaddr_t start = align_up (entry->base, PAGE_SIZE);
size_t max_pages = (size * 8) / (PAGE_SIZE * 8 + 1); size_t max_pages = (size * 8) / (PAGE_SIZE * 8 + 1);
size_t bm_nbits = max_pages; size_t bm_nbits = max_pages;
size_t bm_size = align_up(bm_nbits, 8) / 8; size_t bm_size = align_up (bm_nbits, 8) / 8;
physaddr_t bm_base = start; physaddr_t bm_base = start;
physaddr_t data_base = align_up(bm_base + bm_size, PAGE_SIZE); physaddr_t data_base = align_up (bm_base + bm_size, PAGE_SIZE);
if (bm_base + bm_size >= start + size) if (bm_base + bm_size >= start + size)
continue; continue;
@@ -57,20 +56,20 @@ void pmm_init(void) {
if (final_pages < max_pages) { if (final_pages < max_pages) {
bm_nbits = final_pages; bm_nbits = final_pages;
bm_size = align_up(bm_nbits, 8) / 8; bm_size = align_up (bm_nbits, 8) / 8;
data_base = align_up(bm_base + bm_size, PAGE_SIZE); data_base = align_up (bm_base + bm_size, PAGE_SIZE);
} }
size_t managed_size = final_pages * PAGE_SIZE; size_t managed_size = final_pages * PAGE_SIZE;
uint8_t *bm_base1 = (uint8_t *)(bm_base + hhdm->offset); uint8_t* bm_base1 = (uint8_t*)(bm_base + hhdm->offset);
/* Init the pm region. */ /* Init the pm region. */
pmm_region->lock = SPIN_LOCK_INIT; pmm_region->lock = SPIN_LOCK_INIT;
pmm_region->membase = data_base; pmm_region->membase = data_base;
pmm_region->size = managed_size; pmm_region->size = managed_size;
bm_init(&pmm_region->bm, bm_base1, bm_nbits); bm_init (&pmm_region->bm, bm_base1, bm_nbits);
bm_clear_region(&pmm_region->bm, 0, bm_nbits); bm_clear_region (&pmm_region->bm, 0, bm_nbits);
pmm_region->flags |= PMM_REGION_ACTIVE; /* mark as active */ pmm_region->flags |= PMM_REGION_ACTIVE; /* mark as active */
region++; region++;
@@ -82,9 +81,10 @@ void pmm_init(void) {
* Find free space for a block range. For every bit of the bitmap, we test nblks bits forward. * Find free space for a block range. For every bit of the bitmap, we test nblks bits forward.
* bm_test_region helps us out, because it automatically does range checks. See comments there. * bm_test_region helps us out, because it automatically does range checks. See comments there.
*/ */
static size_t pmm_find_free_space(struct pmm_region *pmm_region, size_t nblks) { static size_t pmm_find_free_space (
struct pmm_region* pmm_region, size_t nblks) {
for (size_t bit = 0; bit < pmm_region->bm.nbits; bit++) { for (size_t bit = 0; bit < pmm_region->bm.nbits; bit++) {
if (bm_test_region(&pmm_region->bm, bit, nblks)) { if (bm_test_region (&pmm_region->bm, bit, nblks)) {
continue; continue;
} }
@@ -94,56 +94,57 @@ static size_t pmm_find_free_space(struct pmm_region *pmm_region, size_t nblks) {
return (size_t)-1; return (size_t)-1;
} }
physaddr_t pmm_alloc(size_t nblks) { physaddr_t pmm_alloc (size_t nblks) {
for (size_t region = 0; region < PMM_REGIONS_MAX; region++) { for (size_t region = 0; region < PMM_REGIONS_MAX; region++) {
struct pmm_region *pmm_region = &pmm.regions[region]; struct pmm_region* pmm_region = &pmm.regions[region];
/* Inactive region, so don't bother with it. */ /* Inactive region, so don't bother with it. */
if (!(pmm_region->flags & PMM_REGION_ACTIVE)) if (!(pmm_region->flags & PMM_REGION_ACTIVE))
continue; continue;
spin_lock(&pmm_region->lock); spin_lock (&pmm_region->lock);
/* Find starting bit of the free bit range */ /* Find starting bit of the free bit range */
size_t bit = pmm_find_free_space(pmm_region, nblks); size_t bit = pmm_find_free_space (pmm_region, nblks);
/* Found a free range? */ /* Found a free range? */
if (bit != (size_t)-1) { if (bit != (size_t)-1) {
/* Mark it */ /* Mark it */
bm_set_region(&pmm_region->bm, bit, nblks); bm_set_region (&pmm_region->bm, bit, nblks);
spin_unlock(&pmm_region->lock); spin_unlock (&pmm_region->lock);
return pmm_region->membase + bit * PAGE_SIZE; return pmm_region->membase + bit * PAGE_SIZE;
} }
spin_unlock(&pmm_region->lock); spin_unlock (&pmm_region->lock);
} }
return PMM_ALLOC_ERR; return PMM_ALLOC_ERR;
} }
void pmm_free(physaddr_t p_addr, size_t nblks) { void pmm_free (physaddr_t p_addr, size_t nblks) {
/* Round down to nearest page boundary */ /* Round down to nearest page boundary */
physaddr_t aligned_p_addr = align_down(p_addr, PAGE_SIZE); physaddr_t aligned_p_addr = align_down (p_addr, PAGE_SIZE);
for (size_t region = 0; region < PMM_REGIONS_MAX; region++) { for (size_t region = 0; region < PMM_REGIONS_MAX; region++) {
struct pmm_region *pmm_region = &pmm.regions[region]; struct pmm_region* pmm_region = &pmm.regions[region];
/* Inactive region, so don't bother with it. */ /* Inactive region, so don't bother with it. */
if (!(pmm_region->flags & PMM_REGION_ACTIVE)) if (!(pmm_region->flags & PMM_REGION_ACTIVE))
continue; continue;
/* If aligned_p_addr is within the range if this region, it belongs to it. */ /* If aligned_p_addr is within the range if this region, it belongs to it. */
if (aligned_p_addr >= pmm_region->membase && aligned_p_addr < pmm_region->size) { if (aligned_p_addr >= pmm_region->membase &&
aligned_p_addr < pmm_region->size) {
physaddr_t addr = aligned_p_addr - pmm_region->membase; physaddr_t addr = aligned_p_addr - pmm_region->membase;
size_t bit = div_align_up(addr, PAGE_SIZE); size_t bit = div_align_up (addr, PAGE_SIZE);
spin_lock(&pmm_region->lock); spin_lock (&pmm_region->lock);
bm_clear_region(&pmm_region->bm, bit, nblks); bm_clear_region (&pmm_region->bm, bit, nblks);
spin_unlock(&pmm_region->lock); spin_unlock (&pmm_region->lock);
break; break;
} }

View File

@@ -1,12 +1,12 @@
#ifndef _KERNEL_MM_PMM_H #ifndef _KERNEL_MM_PMM_H
#define _KERNEL_MM_PMM_H #define _KERNEL_MM_PMM_H
#include <libk/std.h>
#include <libk/bm.h> #include <libk/bm.h>
#include <sync/spin_lock.h> #include <libk/std.h>
#include <mm/types.h> #include <mm/types.h>
#include <sync/spin_lock.h>
#define PMM_ALLOC_ERR ((physaddr_t)-1) #define PMM_ALLOC_ERR ((physaddr_t) - 1)
#define PMM_REGIONS_MAX 32 #define PMM_REGIONS_MAX 32
@@ -24,8 +24,8 @@ struct pmm {
struct pmm_region regions[PMM_REGIONS_MAX]; struct pmm_region regions[PMM_REGIONS_MAX];
}; };
void pmm_init(void); void pmm_init (void);
physaddr_t pmm_alloc(size_t nblks); physaddr_t pmm_alloc (size_t nblks);
void pmm_free(physaddr_t p_addr, size_t nblks); void pmm_free (physaddr_t p_addr, size_t nblks);
#endif // _KERNEL_MM_PMM_H #endif // _KERNEL_MM_PMM_H

View File

@@ -1,12 +1,12 @@
#include <libk/std.h> #include <libk/std.h>
#include <sys/spin_lock.h>
#include <sync/spin_lock.h> #include <sync/spin_lock.h>
#include <sys/spin_lock.h>
void spin_lock(spin_lock_t *sl) { void spin_lock (spin_lock_t* sl) {
while (atomic_flag_test_and_set_explicit(sl, memory_order_acquire)) while (atomic_flag_test_and_set_explicit (sl, memory_order_acquire))
spin_lock_relax(); spin_lock_relax ();
} }
void spin_unlock(spin_lock_t *sl) { void spin_unlock (spin_lock_t* sl) {
atomic_flag_clear_explicit(sl, memory_order_release); atomic_flag_clear_explicit (sl, memory_order_release);
} }

View File

@@ -7,7 +7,7 @@
typedef atomic_flag spin_lock_t; typedef atomic_flag spin_lock_t;
void spin_lock(spin_lock_t *sl); void spin_lock (spin_lock_t* sl);
void spin_unlock(spin_lock_t *sl); void spin_unlock (spin_lock_t* sl);
#endif // _KERNEL_SYNC_SPIN_LOCK_H #endif // _KERNEL_SYNC_SPIN_LOCK_H

View File

@@ -1,10 +1,11 @@
#ifndef _KERNEL_SYS_DEBUG_H #ifndef _KERNEL_SYS_DEBUG_H
#define _KERNEL_SYS_DEBUG_H #define _KERNEL_SYS_DEBUG_H
void debugprintf(const char *fmt, ...); void debugprintf (const char* fmt, ...);
#define DEBUG(fmt, ...) do { \ #define DEBUG(fmt, ...) \
debugprintf("%s: " fmt, __func__, ##__VA_ARGS__); \ do { \
} while(0) debugprintf ("%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#endif // _KERNEL_SYS_DEBUG_H #endif // _KERNEL_SYS_DEBUG_H

View File

@@ -2,7 +2,7 @@
#define _KERNEL_SYS_MM_H #define _KERNEL_SYS_MM_H
#if defined(__x86_64__) #if defined(__x86_64__)
#include <amd64/mm.h> #include <amd64/mm.h>
#endif #endif
#endif // _KERNEL_SYS_MM_H #endif // _KERNEL_SYS_MM_H

View File

@@ -1,6 +1,6 @@
#ifndef _KERNEL_SYS_SPIN_LOCK_H #ifndef _KERNEL_SYS_SPIN_LOCK_H
#define _KERNEL_SYS_SPIN_LOCK_H #define _KERNEL_SYS_SPIN_LOCK_H
void spin_lock_relax(void); void spin_lock_relax (void);
#endif // _KERNEL_SYS_SPIN_LOCK_H #endif // _KERNEL_SYS_SPIN_LOCK_H

View File

@@ -1,31 +1,30 @@
#include <libk/std.h> #include <libk/std.h>
#include <sys/debug.h>
#include <mm/liballoc.h>
#include <limine/requests.h> #include <limine/requests.h>
#include <mm/liballoc.h>
#include <sys/debug.h>
#include <uacpi/kernel_api.h> #include <uacpi/kernel_api.h>
#include <uacpi/status.h> #include <uacpi/status.h>
uacpi_status uacpi_kernel_get_rsdp(uacpi_phys_addr *out_rsdp_address) { uacpi_status uacpi_kernel_get_rsdp (uacpi_phys_addr* out_rsdp_address) {
struct limine_hhdm_response *hhdm = limine_hhdm_request.response; struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
struct limine_rsdp_response *rsdp = limine_rsdp_request.response; struct limine_rsdp_response* rsdp = limine_rsdp_request.response;
*out_rsdp_address = (uacpi_phys_addr)((uintptr_t)rsdp->address - (uintptr_t)hhdm->offset); *out_rsdp_address =
(uacpi_phys_addr)((uintptr_t)rsdp->address - (uintptr_t)hhdm->offset);
return UACPI_STATUS_OK; return UACPI_STATUS_OK;
} }
void *uacpi_kernel_map(uacpi_phys_addr addr, uacpi_size len) { void* uacpi_kernel_map (uacpi_phys_addr addr, uacpi_size len) {
(void)len; (void)len;
struct limine_hhdm_response *hhdm = limine_hhdm_request.response; struct limine_hhdm_response* hhdm = limine_hhdm_request.response;
return (void *)((uintptr_t)hhdm->offset + (uintptr_t)addr); return (void*)((uintptr_t)hhdm->offset + (uintptr_t)addr);
} }
void uacpi_kernel_unmap(void *addr, uacpi_size len) { void uacpi_kernel_unmap (void* addr, uacpi_size len) { (void)addr, (void)len; }
(void)addr, (void)len;
}
void uacpi_kernel_log(uacpi_log_level level, const uacpi_char* msg) { void uacpi_kernel_log (uacpi_log_level level, const uacpi_char* msg) {
const char *prefix = NULL; const char* prefix = NULL;
switch (level) { switch (level) {
case UACPI_LOG_DEBUG: case UACPI_LOG_DEBUG:
@@ -45,5 +44,5 @@ void uacpi_kernel_log(uacpi_log_level level, const uacpi_char* msg) {
break; break;
} }
DEBUG("%s %s", prefix, msg); DEBUG ("%s %s", prefix, msg);
} }